The Optimized Sparse Kernel Interface (OSKI) Library User's Guide for Version 1.0.1h

OSKI is based on research supported in part by the National Science Foundation under NSF Cooperative Agreement No. ACI-9813362, NSF Cooperative Agreement No. ACI9619020, the Department of Energy under DOE Grant No. DE-FC02-01ER25478, and gifts from HP and Intel. This research used resources of the Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by DOE under Contract No. DEAC05-00OR22725, the High Performance Computing Research Facility, Mathematics and Computer Science Division, Argonne National Laboratory, the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, the University of Electro-Communications in Tokyo, Japan, the Dept. of Biomedical Informatics at Ohio State University, and the OpenPower Project at the University of Augsburg, Germany. The information presented here does not necessarily reflect the position or the policy of the Government and no official endorsement should be inferred.

[1]  Iain S. Duff,et al.  An overview of the sparse basic linear algebra subprograms: The new standard from the BLAS technical forum , 2002, TOMS.

[2]  Michael T. Heath,et al.  Improving Performance of Sparse Matrix-Vector Multiplication , 1999, ACM/IEEE SC 1999 Conference (SC'99).

[3]  Roldan Pozo,et al.  NIST sparse BLAS user's guide , 2001 .

[4]  Michael B. Giles,et al.  Renumbering unstructured grids to improve the performance of codes on hierarchical memory machines , 1997 .

[5]  Richard Vuduc,et al.  Automatic performance tuning of sparse matrix kernels , 2003 .

[6]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[7]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[8]  Katherine A. Yelick,et al.  Optimizing Sparse Matrix Vector Multiplication on SMP , 1999, SIAM Conference on Parallel Processing for Scientific Computing.

[9]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[10]  Richard W. Vuduc,et al.  Sparsity: Optimization Framework for Sparse Matrix Kernels , 2004, Int. J. High Perform. Comput. Appl..

[11]  Sivan Toledo,et al.  Improving the memory-system performance of sparse-matrix vector multiplication , 1997, IBM J. Res. Dev..

[12]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[13]  Gerd Heber,et al.  Self‐avoiding walks over adaptive unstructured grids , 2000 .

[14]  J. Demmel,et al.  Sun Microsystems , 1996 .