Caristi’s Fixed Point Theorem and Ekeland’s Variational Principle for Set Valued Mapping using the LZ-functions

The aims of this paper is to give some new theorems in the field of fixed point theory. For that, we establish a generalized result of Caristi’s fixed point theorem by introducing a new type of functions that will be called the LZ-functions. And since that theorem is equivalent to Ekeland’s variational principle, we derive also an εvariational-type principle, which generalizes the latter. As application, we study the existence of solution for a system of equilibrium problem.

[1]  Janusz Matkowski Fixed point theorems for mappings with a contractive iterate at a point , 1977 .

[2]  D. G. Figueiredo,et al.  Lectures on the ekeland variational principle with applications and detours , 1989 .

[3]  Mihai Turinici,et al.  Abstract comparison principles and multivariable Gronwall-Bellman inequalities , 1986 .

[4]  J. Caristi,et al.  Fixed point theorems for mapping satisfying inwardness conditions , 1976 .

[5]  A. Cataldo,et al.  A constructive fixed-point theorem and the feedback semantics of timed systems , 2006, 2006 8th International Workshop on Discrete Event Systems.

[6]  Jerrold Siegel,et al.  A NEW PROOF OF CARISTI'S FIXED POINT THEOREM , 1977 .

[7]  I. Ekeland On the variational principle , 1974 .

[8]  Á. Száz An improved Altman type generalization of the Brezis-Browder ordering principle , 2007 .

[9]  Hassen Aydi,et al.  Coupled Fixed Points for Meir-Keeler Contractions in Ordered Partial Metric Spaces , 2012 .

[10]  Ashok Ganguly,et al.  Some Results on Fixed Points , 1982 .

[11]  Christiane Tammer,et al.  Minimal elements for product orders , 2008 .

[12]  S. Nadler Multi-valued contraction mappings. , 1969 .

[13]  L. Ciric,et al.  Multi-valued nonlinear contraction mappings , 2009 .

[14]  G. Kassay,et al.  Existence of equilibria via Ekeland's principle , 2005 .

[15]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[16]  M. Edelstein,et al.  An extension of Banach’s contraction principle , 1961 .

[17]  J. Aubin,et al.  Fixed points and stationary points of dissipative multivalued maps , 1980 .

[18]  Chi Song Wong Generalized contractions and fixed point theorems , 1974 .

[19]  Le van Hot Fixed point theorems for multivalued mappings , 1982 .

[20]  A. Brøndsted,et al.  On a lemma of Bishop and Phelps , 1974 .

[21]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[22]  F. Browder,et al.  A general principle on ordered sets in nonlinear functional analysis , 1976 .

[23]  S. Nadler,et al.  Multi-valued contraction mappings in generalized metric spaces , 1970 .

[24]  L. F. Guseman,et al.  Fixed point theorems for mappings with a contractive iterate at a point , 1970 .

[25]  A. Brøndsted Fixed points and partial orders , 1976 .

[26]  David Yang Gao,et al.  NONCONVEX MINIMIZATION PROBLEMS , 2007 .

[27]  J. Harjani,et al.  Fixed point theorems for mixed monotone operators and applications to integral equations , 2011 .