Uncalibrated Visual Tasks via Linear Interaction

We propose an approach for the design and control of both reflexive and purposive visual tasks with an uncalibrated camera. The approach is based on the bi-dimensional appearance of the objects in the environment, and explicitly takes into account independent object motions. The introduction of a linear model of camera-object interaction dramatically simplifies visual analysis and control by reducing the size of the visual representation. We discuss the implementation of three tasks of increasing complexity, based on active contour analysis and polynomial planning of image contour transformations. Real-time experiments with a robot wrist-mounted camera demonstrate that the approach is conveniently usable for visual navigation, active exploration and perception, and man-robot interaction.

[1]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[2]  Joseph L. Mundy,et al.  Projective geometry for machine vision , 1992 .

[3]  Enrico Grosso On Perceptual Advantages of Eye-Head Active Control , 1994, ECCV.

[4]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[5]  Paolo Dario,et al.  Attentive behavior in an anthropomorphic robot vision system , 1994, Robotics Auton. Syst..

[6]  Giulio Sandini,et al.  Active Tracking Strategy for Monocular Depth Inference over Multiple Frames , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[8]  Fadi Dornaika,et al.  Object pose: links between paraperspective and perspective , 1995, Proceedings of IEEE International Conference on Computer Vision.

[9]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[10]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[11]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[12]  Roberto Cipolla,et al.  Visual robot guidance from uncalibrated stereo , 1995 .

[13]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[14]  James L. Crowley,et al.  Integration and control of reactive visual processes , 1994, Robotics Auton. Syst..

[15]  James L. Crowley,et al.  Vision as Process , 1995 .

[16]  James S. Albus,et al.  Brains, behavior, and robotics , 1981 .

[17]  Andrew Blake,et al.  Surface Orientation and Time to Contact from Image Divergence and Deformation , 1992, ECCV.

[18]  Bernard Espiau,et al.  Effect of Camera Calibration Errors on Visual Servoing in Robotics , 1993, ISER.

[19]  Paolo Dario,et al.  Affine visual servoing: a framework for relative positioning with a robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[20]  Enrico Grosso,et al.  Head-centered orientation strategies in animate vision , 1993, 1993 (4th) International Conference on Computer Vision.

[21]  R. Bajcsy Active perception , 1988 .

[22]  Giulio Sandini,et al.  Dynamic aspects in active vision , 1992, CVGIP Image Underst..

[23]  Hiroshi Murase,et al.  Learning, positioning, and tracking visual appearance , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[24]  Jan-Olof Eklundh,et al.  A head-eye system - Analysis and design , 1992, CVGIP Image Underst..

[25]  Lee E. Weiss,et al.  Dynamic sensor-based control of robots with visual feedback , 1987, IEEE Journal on Robotics and Automation.

[26]  Ian D. Reid,et al.  Tracking foveated corner clusters using affine structure , 1993, 1993 (4th) International Conference on Computer Vision.

[27]  Sven J. Dickinson,et al.  Active Object Recognition Integrating Attention and Viewpoint Control , 1997, Comput. Vis. Image Underst..