Fast-low temperature microwave sintering of ZrSiO4–ZrO2 composites

[1]  C. Alcázar,et al.  Consolidation of complex-shape zircon compacts through agar gelation , 2022, European Journal of Materials.

[2]  R. Moreno,et al.  Microwave sintering study of strontium-doped lanthanum manganite in a single-mode microwave with electric and magnetic field at 2.45 GHz , 2022, Journal of the European Ceramic Society.

[3]  Yong Yi,et al.  Rapid preparation of zirconia/zircon composites ceramics by microwave method: Experiment and first-principle investigation , 2021 .

[4]  R. Moreno,et al.  Dielectric, mechanical and thermal properties of ZrO2–TiO2 materials obtained by microwave sintering at low temperature , 2021 .

[5]  Yi Ding,et al.  Effect of Si/Zr molar ratio on the sintering and crystallization behavior of zircon ceramics , 2020, Journal of the European Ceramic Society.

[6]  Yi Ding,et al.  Phase and microstructure evolution of 0.2Zr1-Ce O2/Zr1-Ce SiO4 (0 ≤ x + y ≤ 1) ceramics designed to immobilize tetravalent actinides , 2020 .

[7]  C. Alcázar,et al.  Aqueous suspension processing of multicomponent submicronic Y-TZP/Al2O3/SiC particles for suspension plasma spraying , 2018 .

[8]  Yi Ding,et al.  Low temperature and rapid preparation of zirconia/zircon (ZrO2/ZrSiO4) composite ceramics by a hydrothermal-assisted sol-gel process , 2018 .

[9]  Yi Ding,et al.  Phase evolution and chemical durability of Zr1-xNd xO2-x/2 (0 ≤ x ≤ 1) ceramics , 2017 .

[10]  S. Du,et al.  Rare earth separations by selective borate crystallization , 2017, Nature Communications.

[11]  T. Basak,et al.  A review on the susceptor assisted microwave processing of materials , 2016 .

[12]  A. Borrell,et al.  High thermal stability of microwave sintered low-εr β-eucryptite materials , 2015 .

[13]  R. Moreno,et al.  Hydrothermal Degradation Behavior of Y‐TZP Ceramics Sintered by Nonconventional Microwave Technology , 2015 .

[14]  Jose M. Catala-Civera,et al.  Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity , 2015, IEEE Transactions on Microwave Theory and Techniques.

[15]  Y. Sakka,et al.  Zircon–zirconia (ZrSiO4–ZrO2) dense ceramic composites by spark plasma sintering , 2012 .

[16]  Y. Sakka,et al.  Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering , 2012 .

[17]  L. Garrido,et al.  Zirconia toughening of mullite–zirconia–zircon composites obtained by direct sintering , 2010 .

[18]  L. Garrido,et al.  Mechanical and fracture properties of zircon–mullite composites obtained by direct sintering , 2009 .

[19]  Jie Lian,et al.  Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides , 2004 .

[20]  Steven J. Zinkle,et al.  Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium , 1998 .

[21]  W. J. Weber,et al.  Zircon: A host-phase for the disposal of weapons plutonium , 1995 .

[22]  G Taubes,et al.  No easy way to shackle the nuclear demon. , 1994, Science.

[23]  William J. Weber,et al.  Self-radiation damage in Gd2Ti2O7 , 1985 .

[24]  E. A. Charles,et al.  Fracture Toughness Determinations by Indentation , 1976 .

[25]  Q. Murtaza,et al.  Microwave Sintering of Advanced Composites Materials: A Review , 2018 .

[26]  L. Garrido,et al.  Colloidal processing, sintering and mechanical properties of zircon (ZrSiO4) , 2015 .

[27]  W. J. Weber,et al.  Synthesis of zircon for immobilization of actinides , 1995 .