Spatial Econometric Modeling of Origin-Destination Flows

ABSTRACT Standard spatial autoregressive models rely on spatial weight structures constructed to model dependence among n regions. Ways of parsimoniously modeling the connectivity among the sample of N=n2 origin‐destination (OD) pairs that arise in a closed system of interregional flows has remained a stumbling block. We overcome this problem by proposing spatial weight structures that model dependence among the N OD pairs in a fashion consistent with standard spatial autoregressive models. This results in a family of spatial OD models introduced here that represent an extension of the spatial regression models described in Anselin (1988).

[1]  Daniel A. Griffith,et al.  Simplifying the normalizing factor in spatial autoregressions for irregular lattices , 1992 .

[2]  James E. Anderson A Theoretical Foundation for the Gravity Equation , 1979 .

[3]  L. Anselin,et al.  Spatial Econometrics: Methods and Models , 1988 .

[4]  R. Kelley Pace,et al.  Semiparametric Maximum Likelihood Estimates of Spatial Dependence , 2002 .

[5]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[6]  J. Geweke,et al.  Bayesian Treatment of the Independent Student- t Linear Model , 1993 .

[7]  A. Porojan,et al.  Trade Flows and Spatial Effects: The Gravity Model Revisited , 2001 .

[8]  James E. Anderson,et al.  Trade Costs , 2004 .

[9]  J. LeSage Bayesian Estimation of Limited Dependent Variable Spatial Autoregressive Models , 2010 .

[10]  Micah Altman,et al.  Numerical Issues in Statistical Computing for the Social Scientist , 2003 .

[11]  Daniel A. Griffith,et al.  Spatial Structure and Spatial Interaction: 25 Years Later , 2007 .

[12]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[13]  Michael Tiefelsdorf,et al.  Misspecifications in interaction model distance decay relations: A spatial structure effect , 2003, J. Geogr. Syst..

[14]  Cem Ertur,et al.  International R&D spillovers in the multi-country Schumpeterian growth model , 2007 .

[15]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[16]  D. Griffith,et al.  Explorations into the Relationship between Spatial Structure and Spatial Interaction , 1980 .

[17]  Noel A Cressie,et al.  Bayesian smoothing of rates in small geographic areas , 1995 .

[18]  Cem Ertur,et al.  Growth, technological interdependence and spatial externalities: theory and evidence , 2007 .

[19]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[20]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[21]  Ronald P. Barry,et al.  Monte Carlo estimates of the log determinant of large sparse matrices , 1999 .

[22]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[23]  J. LeSage,et al.  Biases of OLS and Spatial Lag Models in the Presence of an Omitted Variable and Spatially Dependent Variables , 2008 .

[24]  Daniel A. Griffith,et al.  Faster maximum likelihood estimation of very large spatial autoregressive models: an extension of the Smirnov–Anselin result , 2004 .

[25]  Bernard Fingleton,et al.  Empirical growth models with spatial effects , 2006 .

[26]  James E. Anderson A Theoretical Foundation for the Gravity Model of Factor Flows , 1978 .

[27]  R. Pace,et al.  Spatial Distribution of Retail Sales , 2005 .

[28]  James P. LeSage,et al.  Chebyshev approximation of log-determinants of spatial weight matrices , 2004, Comput. Stat. Data Anal..

[29]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[30]  Manfred M. Fischer,et al.  The Geography of Knowledge Spillovers between High-Technology Firms in Europe - Evidence from a Spatial Interaction Modelling Perspective , 2006 .

[31]  D. Griffith,et al.  Trade-offs associated with normalizing constant computational simplifications for estimating spatial statistical models , 1995 .

[32]  Tony E. Smith,et al.  Gravity Models of Spatial Interaction Behavior , 1995 .

[33]  L. Anselin,et al.  Fast maximum likelihood estimation of very large spatial autoregression models: a characteristic polynomial approach , 2001 .

[34]  James P. LeSage Spatial Regression Models , 2004 .

[35]  J. LeSage Bayesian Estimation of Spatial Autoregressive Models , 1997 .

[36]  Wilfried Koch,et al.  'Dual' Gravity: Using Spatial Econometrics to Control for Multilateral Resistance , 2007 .

[37]  B. Cushing,et al.  Crossing boundaries and borders: Regional science advances in migration modelling , 2003 .

[38]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[39]  Manfred M. Fischer,et al.  Knowledge Spillovers across Europe. Evidence from a Poisson Spatial Interaction Model with Spatial Effects , 2015 .

[40]  L. Feiner Crossing boundaries and borders , 2006, Nature nanotechnology.