NUMBER OF LIMIT CYCLES OF THE LIENARD EQUATION

In this paper, we study a Lienard system of the form x ˙5y2F(x), y52x, where F(x) is an odd polyno- mial. We introduce a method that gives a sequence of algebraic approximations to the equation of each limit cycle of the system. This sequence seems to converge to the exact equation of each limit cycle. We obtain also a sequence of polynomials Rn(x) whose roots of odd multiplicity are related to the number and location of the limit cycles of the system. @S1063-651X~97!02809-2#

[1]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[2]  B. Van Der Pol,et al.  Forced Oscillations in a Circuit with Nonlinear Resistance , 1924 .

[3]  N. Levinson,et al.  A general equation for relaxation oscillations , 1942 .

[4]  C. Pugh,et al.  On Liénard's equation , 1977 .

[5]  N. G. Lloyd,et al.  The number of small-amplitude limit cycles of Liénard equations , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  N. G. Lloyd THEORY OF LIMIT CYCLES (Translations of Mathematical Monographs 66) , 1988 .

[7]  Uniqueness of limit cycles of generalised Lienard systems and predator-prey systems , 1988 .

[8]  I. Alger New Directions in , 1988 .

[9]  Yang Kuang,et al.  Uniqueness of limit cycles in Gause-type models of predator-prey systems , 1988 .

[10]  Freddy Dumortier,et al.  Cubic Lienard equations with linear damping , 1990 .

[11]  Pavol Brunovsky New directions in dynamical systems , 1990 .

[12]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[13]  Preben K. Alsholm Existence of limit cycles for generalized Liénard equations , 1992 .

[14]  小谷 健司 Existence of exactly N periodic solutions for Liénard systems , 1994 .

[15]  Poland Loci of limit cycles. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Giacomini,et al.  Determination of limit cycles for two-dimensional dynamical systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[18]  INSTABILITIES, POINT ATTRACTORS AND LIMIT CYCLES IN AN INFLATIONARY UNIVERSE , 1995, hep-ph/9512207.

[19]  L. Salasnich On the Limit Cycle of an Inflationary Universe , 1996, gr-qc/9612045.

[20]  Maier,et al.  Oscillatory Behavior of the Rate of Escape through an Unstable Limit Cycle. , 1996, Physical review letters.

[21]  Jaume Llibre,et al.  On the nonexistence, existence and uniqueness of limit cycles , 1996 .

[22]  Freddy Dumortier,et al.  On the uniqueness of limit cycles surrounding one or more singularities for Liénard equations , 1996 .

[23]  P. Haccou Mathematical Models of Biology , 2022 .