Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0

[1]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[2]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[3]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[4]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[5]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[6]  R. Gribonval,et al.  Highly sparse representations from dictionaries are unique and independent of the sparseness measure , 2007 .

[7]  Alexander Petukhov,et al.  Fast implementation of orthogonal greedy algorithm for tight wavelet frames , 2006, Signal Process..

[8]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[9]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[10]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[11]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[12]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[13]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  V. Temlyakov Nonlinear Methods of Approximation , 2003, Found. Comput. Math..

[15]  Vladimir N. Temlyakov,et al.  Weak greedy algorithms[*]This research was supported by National Science Foundation Grant DMS 9970326 and by ONR Grant N00014‐96‐1‐1003. , 2000, Adv. Comput. Math..

[16]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..