The optimal control of unsteady flows with a discrete adjoint method

This paper presents a general framework to derive a discrete adjoint method for the optimal control of unsteady flows. The complete formulation of a generic time-dependent optimal design problem is introduced and it is outlined how to derive the discrete set of adjoint equations in a general approach. Results are shown that demonstrate the application of the theory to the drag minimization of viscous flow around a rotating cylinder, and to the remote inverse design of laminar flow around the multi-element NLR 7301 configuration at a high angle of attack. In order to reduce the considerable computational costs of unsteady optimization, the use of bigger time steps over transitional or unphysical adjusting periods as well as omitting time steps while recording the flow solution are investigated and are shown to work well in practice.

[1]  T. Kármán,et al.  Ueber den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt , 1911 .

[2]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[3]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[4]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[5]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[6]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[7]  Larry Nazareth,et al.  A family of variable metric updates , 1977, Math. Program..

[8]  B. Van den Berg,et al.  Boundary layer measurements on a two-dimensional wing with flap and a comparison with calculations , 1979 .

[9]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[10]  T. Pulliam Efficient solution methods for the Navier-Stokes equations , 1986 .

[11]  C. Williamson Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers , 1989, Journal of Fluid Mechanics.

[12]  P. Dimotakis,et al.  Rotary oscillation control of a cylinder wake , 1989, Journal of Fluid Mechanics.

[13]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[14]  M. Hafez,et al.  Computational fluid dynamics review 1995 , 1995 .

[15]  A. Jameson Optimum aerodynamic design using CFD and control theory , 1995 .

[16]  S. Obayashi,et al.  Aerodynamic optimization with evolutionary algorithms , 1996 .

[17]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[18]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[19]  R. Henderson Nonlinear dynamics and pattern formation in turbulent wake transition , 1997, Journal of Fluid Mechanics.

[20]  David W. Zingg,et al.  Efficient Newton-Krylov Solver for Aerodynamic Computations , 1998 .

[21]  Christopher L. Rumsey,et al.  Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder: Subcritical to Transcritical Reynolds Numbers , 1998 .

[22]  A. Jameson,et al.  Optimum Aerodynamic Design Using the Navier–Stokes Equations , 1997 .

[23]  Mehdi R. Khorrami,et al.  Unsteady Flow Computations of a Slat with a Blunt Trailing Edge , 1999, AIAA Journal.

[24]  P Lockard David,et al.  Computational Aeroacoustic Analysis of Slat Trailing-Edge Flow , 1999 .

[25]  Mehdi R. Khorrami,et al.  Computational aeroacoustic analysis of slat trailing-edge flow , 1999 .

[26]  W. K. Anderson,et al.  Airfoil Design on Unstructured Grids for Turbulent Flows , 1999 .

[27]  Jacques Periaux,et al.  Active Control and Drag Optimization for Flow Past a Circular Cylinder , 2000 .

[28]  Juan J. Alonso,et al.  AIAA-2002-0261 An Adjoint Method for the Calculation of Remote Sensitivities in Supersonic Flow , 2002 .

[29]  Michael B. Giles,et al.  The harmonic adjoint approach to unsteady turbomachinery design , 2002 .

[30]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[31]  D. Zingg,et al.  Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-Stokes Equations , 2002 .

[32]  Ionel M. Navon,et al.  Suppression of vortex shedding for flow around a circular cylinder using optimal control , 2002 .

[33]  Antony Jameson,et al.  OPTIMAL CONTROL OF UNSTEADY FLOWS USING A TIME ACCURATE METHOD , 2002 .

[34]  A. Lyrintzis Surface Integral Methods in Computational Aeroacoustics—From the (CFD) Near-Field to the (Acoustic) Far-Field , 2003 .

[35]  David W. Zingg,et al.  A Runge-Kutta-Newton-Krylov Algorithm for Fourth-Order Implicit Time Marching Applied to Unsteady Flows , 2004 .

[36]  Yueping Guo,et al.  Development of Computational Aeroacoustics Tools for Airframe Noise Calculations , 2004 .

[37]  Juan J. Alonso,et al.  An adjoint method for the calculation of remote sensitivities in supersonic flow , 2006 .

[38]  Siva Nadarajah,et al.  Optimum Shape Design of Helicopter Rotors in Forward Flight via Control Theory , 2007 .

[39]  David W. Zingg,et al.  A General Framework for the Optimal Control of Unsteady Flows with Applications , 2007 .

[40]  Dimitri J. Mavriplis,et al.  An Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow Problems with Deforming Meshes , 2007 .

[41]  Olivier Soucy,et al.  SONIC BOOM REDUCTION VIA REMOTE INVERSE ADJOINT APPROACH , 2007 .

[42]  M. Rumpfkeil,et al.  The Remote Inverse Shape Design of Airfoils in Unsteady Flows , 2007 .