The Temporal Logic of Rewriting

This paper presents the temporal logic of rewriting TLR∗. Syntactically, TLR∗ is a very simple extension of CTL∗ which just adds action atoms, in the form of spatial action patterns, to CTL∗. Semantically and pragmatically, however, when used together with rewriting logic as a “tandem” of system specification and property specification logics, it has substantially more expressive power than purely state-based logics like CTL∗, or purely action-based logics like A-CTL∗. Furthermore, it avoids the system/property mismatch problem experienced in state-based or action-based logics, which makes many useful properties inexpressible in those frameworks without unnatural changes to a system’s specification. The advantages in expresiveness of TLR∗ are gained without losing the ability to use existing tools and algorithms to model check its properties: a faithful translation of models and formulas is given that allows verifying TLR∗ properties with CTL∗ model checkers. Simulations and bisimulations reflecting and/or preserving useful classes of TLR∗ properties are also studied. Finally, a strategy language for rewriting is used as a way to verify (resp. falsify) guarantee (resp. safety) formulas in TLR∗ for infinite-state systems and, more generally, to verify strategy formulas about such systems using semidecision procedures.

[1]  José Meseguer,et al.  A Sufficient Completeness Checker for Linear Order-Sorted Specifications Modulo Axioms , 2006, IJCAR.

[2]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[3]  Charles Pecheur,et al.  Symbolic Model Checking of Logics with Actions , 2007, MoChArt.

[4]  Moshe Y. Vardi Branching vs. Linear Time: Final Showdown , 2001, TACAS.

[5]  José Meseguer,et al.  Five Isomorphic Boolean Theories and Four Equational Decision Procedures , 2007 .

[6]  José Meseguer,et al.  Rewriting logic: roadmap and bibliography , 2002, Theor. Comput. Sci..

[7]  Arto Salomaa,et al.  Two Complete Axiom Systems for the Algebra of Regular Events , 1966, JACM.

[8]  Luca Cardelli,et al.  A spatial logic for concurrency (part I) , 2003, Inf. Comput..

[9]  Leslie Lamport,et al.  The temporal logic of actions , 1994, TOPL.

[10]  Javier Esparza,et al.  Rewriting Models of Boolean Programs , 2006, RTA.

[11]  Jan A. Bergstra,et al.  A Characterisation of Computable Data Types by Means of a Finite Equational Specification Method , 1980, ICALP.

[12]  José Meseguer,et al.  Towards a Strategy Language for Maude , 2005, WRLA.

[13]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[14]  Miguel Palomino,et al.  Proving VLRL Action Properties with the Maude Model Checker , 2005, WRLA.

[15]  Patrick Viry,et al.  Equational rules for rewriting logic , 2002, Theor. Comput. Sci..

[16]  Luca Cardelli,et al.  A Spatial Logic for Concurrency , 2001, TACS.

[17]  Ahmed Bouajjani,et al.  Languages, Rewriting Systems, and Verification of Infinite-State Systems , 2001, ICALP.

[18]  Alberto Verdejo,et al.  Deduction, Strategies, and Rewriting , 2007, STRATEGIES@IJCAR.

[19]  José Meseguer,et al.  Equational abstractions , 2008, Theor. Comput. Sci..

[20]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[21]  Narciso Martí-Oliet,et al.  All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic , 2007, All About Maude.

[22]  José Meseguer,et al.  State Space Reduction of Rewrite Theories Using Invisible Transitions , 2006, AMAST.

[23]  José Luiz Fiadeiro,et al.  A Verification Logic for Rewriting Logic , 2005, J. Log. Comput..

[24]  S. Gnesi,et al.  A MODEL CHECKING VERIFICATION ENVIRONMENT FOR UML STATECHARTS , 2005 .

[25]  Radu Mateescu,et al.  Logiques temporelles basées sur actions pour la vérification des systèmes asynchrones , 2003, Tech. Sci. Informatiques.

[26]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[27]  José Meseguer,et al.  Partial Order Reduction for Rewriting Semantics of Programming Languages , 2007, WRLA.

[28]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[29]  John C. Reynolds,et al.  Separation logic: a logic for shared mutable data structures , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[30]  José Meseguer,et al.  Symbolic Model Checking of Infinite-State Systems Using Narrowing , 2007, RTA.

[31]  Colin Stirling,et al.  Modal Mu-Calculi , 2001 .

[32]  José Luiz Fiadeiro,et al.  Towards a Verification Logic for Rewriting Logic , 1999, WADT.

[33]  Rocco De Nicola,et al.  Action versus State based Logics for Transition Systems , 1990, Semantics of Systems of Concurrent Processes.

[34]  J. Meseguer,et al.  Semantic Models for Distributed Object Reflection , 2002, ECOOP.

[35]  Catherine A. Meadows,et al.  Formal specification and analysis of the Group Domain Of Interpretation Protocol using NPATRL and the NRL Protocol Analyzer , 2004, J. Comput. Secur..

[36]  José Meseguer,et al.  Localized Fairness: A Rewriting Semantics , 2005, RTA.

[37]  Grigore Rosu,et al.  Rewriting-Based Techniques for Runtime Verification , 2005, Automated Software Engineering.

[38]  MeseguerJosé Conditional rewriting logic as a unified model of concurrency , 1992 .

[39]  Anne Dicky,et al.  An algebraic and algorithmic method for analysing transition systems , 1986, Theor. Comput. Sci..

[40]  Stephan Merz,et al.  Model Checking , 2000 .

[41]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[42]  Koushik Sen,et al.  An Executable Specification of Asynchronous Pi-Calculus Semantics and May Testing in Maude 2.0 , 2002, Electron. Notes Theor. Comput. Sci..

[43]  Roberto Bruni,et al.  Semantic foundations for generalized rewrite theories , 2006, Theor. Comput. Sci..

[44]  Narciso Martí-Oliet,et al.  Rewriting Logic as a Logical and Semantic Framework , 1996 .

[45]  Luca Cardelli,et al.  A spatial logic for concurrency - II , 2004, Theor. Comput. Sci..