Genetic and Evolutionary Computation — GECCO 2003

Charged particle swarm optimization (CPSO) is well suited to the dynamic search problem since inter-particle repulsion maintains population diversity and good tracking can be achieved with a simple algorithm. This work extends the application of CPSO to the dynamic problem by considering a bi-modal parabolic environment of high spatial and temporal severity. Two types of charged swarms and an adapted neutral swarm are compared for a number of different dynamic environments which include extreme ‘needle-inthe-haystack’ cases. The results suggest that charged swarms perform best in the extreme cases, but neutral swarms are better optimizers in milder environments.

[1]  Nicos Christofides,et al.  The vehicle routing problem , 1976, Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle.

[2]  Jadranka Skorin-Kapov,et al.  Tabu Search Applied to the Quadratic Assignment Problem , 1990, INFORMS J. Comput..

[3]  Éric D. Taillard,et al.  Robust taboo search for the quadratic assignment problem , 1991, Parallel Comput..

[4]  Gilbert Laporte,et al.  A Tabu Search Heuristic for the Vehicle Routing Problem , 1991 .

[5]  John Holt,et al.  A Repeated Matching Heuristic for the Vehicle Routeing Problem , 1994 .

[6]  Karl Sims,et al.  Evolving 3d morphology and behavior by competition , 1994 .

[7]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[8]  Yves Rochat,et al.  Probabilistic diversification and intensification in local search for vehicle routing , 1995, J. Heuristics.

[9]  Dave Cliff,et al.  Tracking the Red Queen: Measurements of Adaptive Progress in Co-Evolutionary Simulations , 1995, ECAL.

[10]  Matthew L. Ginsberg,et al.  Limited Discrepancy Search , 1995, IJCAI.

[11]  John Hallam,et al.  A hybrid GP/GA approach for co-evolving controllers and robot bodies to achieve fitness-specified tasks , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[12]  Olivier C. Martin,et al.  Combining simulated annealing with local search heuristics , 1993, Ann. Oper. Res..

[13]  Catherine Roucairol,et al.  A Parallel Tabu Search Algorithm Using Ejection Chains for the Vehicle Routing Problem , 1996 .

[14]  Pattie Maes,et al.  Co-evolution of Pursuit and Evasion II: Simulation Methods and Results , 1996 .

[15]  John Hallam,et al.  Evolving robot morphology , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[16]  Stefano Nolfi,et al.  God Save the Red Queen! Competition in Co-Evolutionary Robotics , 1997 .

[17]  G. Laporte,et al.  A tabu search heuristic for periodic and multi-depot vehicle routing problems , 1997, Networks.

[18]  V. Deineko,et al.  The Quadratic Assignment Problem: Theory and Algorithms , 1998 .

[19]  Stefano Nolfi,et al.  Co-evolving predator and prey robots , 1998, Artificial Life.

[20]  Stefano Nolfi,et al.  Competitive co-evolutionary robotics: from theory to practice , 1998 .

[21]  G. Dueck,et al.  Record Breaking Optimization Results Using the Ruin and Recreate Principle , 2000 .

[22]  D. Floreano,et al.  Adaptive Behavior in Competing Co-Evolving Species , 2000 .

[23]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[24]  Alexander Clark Unsupervised induction of stochastic context-free grammars using distributional clustering , 2001, CoNLL.

[25]  Jordan B. Pollack,et al.  Three Generations of Automatically Designed Robots , 2001, Artificial Life.

[26]  Gunnar Buason Competitive co-evolution of sensory-motor systems : Appendix , 2002 .

[27]  Gunnar Buason,et al.  Competitive co-evolution of sensory-motor systems , 2002 .

[28]  Paolo Toth,et al.  The Granular Tabu Search and Its Application to the Vehicle-Routing Problem , 2003, INFORMS J. Comput..