Image Filtering Driven by Level Curves

This paper presents an approach to image filtering that is driven by the properties of the iso-valued level curves of the image and their relationship with one another. We explore the relationship of our algorithm to existing probabilistically driven filtering methods such as those based on kernel density estimation, local-mode finding and mean-shift. Extensive experimental results on filtering gray-scale images, color images, gray-scale video and chromaticity fields are presented. In contrast to existing probabilistic methods, in our approach, the selection of the parameter that prevents diffusion across the edge is robustly decoupled from the smoothing of the density itself. Furthermore, our method is observed to produce better filtering results for the same settings of parameters for the filter window size and the edge definition.

[1]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Dorin Comaniciu,et al.  The Variable Bandwidth Mean Shift and Data-Driven Scale Selection , 2001, ICCV.

[6]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[7]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[8]  Suyash P. Awate,et al.  Unsupervised, information-theoretic, adaptive image filtering for image restoration , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Guillermo Sapiro,et al.  Color image enhancement via chromaticity diffusion , 2001, IEEE Trans. Image Process..

[10]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Dorin Comaniciu,et al.  A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift , 2004, Image Vis. Comput..

[12]  K. Plataniotis,et al.  Color Image Processing and Applications , 2000 .

[13]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[14]  Joost van de Weijer,et al.  Local mode filtering , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[15]  Anand Rangarajan,et al.  Probability Density Estimation Using Isocontours and Isosurfaces: Applications to Information-Theoretic Image Registration , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Jean-Michel Morel,et al.  Nonlocal Image and Movie Denoising , 2008, International Journal of Computer Vision.

[17]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Peter Meer,et al.  Discontinuity Preserving Filtering over Analytic Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Jean-Michel Morel,et al.  Neighborhood filters and PDE’s , 2006, Numerische Mathematik.

[21]  Shree K. Nayar,et al.  Histogram Preserving Image Transformations , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).