A Lanczos–like reduction of symmetric structured matrices to semiseparable form*
暂无分享,去创建一个
S. Van Huffel | Raf Vandebril | Nicola Mastronardi | M. Schuermans | S. Huffel | M. Barel | M. Van Barel | M. Schuermans | N. Mastronardi | R. Vandebril
[1] Yuli Eidelman,et al. Inversion formulas and linear complexity algorithm for diagonal plus semiseparable matrices , 1997 .
[2] Raf Vandebril,et al. Orthogonal similarity transformation of a symmetric matrix into a diagonal-plus-semiseparable one with free choice of the diagonal , 2006, Numerische Mathematik.
[3] H. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .
[4] G. W. Stewart,et al. Matrix algorithms , 1998 .
[5] Raf Vandebril,et al. An Orthogonal Similarity Reduction of a Matrix into Semiseparable Form , 2003, SIAM J. Matrix Anal. Appl..
[6] Sabine Van Huffel,et al. Unsupervised tissue segmentation of MRSI data using Canonical Correlation Analysis , 2005 .
[7] S Van Huffel,et al. Improved Lanczos algorithms for blackbox MRS data quantitation. , 2002, Journal of magnetic resonance.
[8] D. Fasino,et al. Fast and stable algorithms for reducing diagonal plus semiseparable matrices to tridiagonal and bidiagonal form , 2001 .
[9] Mike E. Davies,et al. Tensor Decompositions, State of the Art and Applications , 2009, 0905.0454.
[10] Nicola Mastronardi,et al. Computing the rank revealing factorization of symmetric matrices by the semiseparable reduction , 2005 .
[11] Gene H. Golub,et al. Matrix computations , 1983 .
[12] Raf Vandebril,et al. A QR–method for computing the singular values via semiseparable matrices , 2004, Numerische Mathematik.
[13] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[14] R. Larsen. Lanczos Bidiagonalization With Partial Reorthogonalization , 1998 .
[15] H. Simon. The Lanczos algorithm with partial reorthogonalization , 1984 .
[16] Sabine Van Huffel,et al. Tissue segmentation and classification of MRSI data using canonical correlation analysis , 2005, Magnetic resonance in medicine.
[17] Dario Fasino,et al. Direct and Inverse Eigenvalue Problems for Diagonal-Plus-Semiseparable Matrices , 2003, Numerical Algorithms.
[18] Hongyuan Zha,et al. Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications , 1999, SIAM J. Sci. Comput..
[19] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .
[20] R. Kumaresan,et al. Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.
[21] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[22] Beatrice Meini,et al. Solving certain matrix equations by means of Toeplitz computations: algorithms and applications , 2001 .
[23] Raf Vandebril,et al. A note on the representation and definition of semiseparable matrices , 2005, Numer. Linear Algebra Appl..