Non-intrusive data learning based computational homogenization of materials with uncertainties

This paper is devoted to the study of the influence of variabilities and uncertainties when homogenizing the effective behavior of elastic heterogeneous media. A new non-intrusive approach is proposed connecting computational homogenization schemes and reduced order models. The effect of the local material variabilities and uncertainties on the overall behavior is studied using a high dimensional parametric approach.

[1]  Tian Tang,et al.  Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials , 2007 .

[2]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[3]  Ye Lu,et al.  Space–time POD based computational vademecums for parametric studies: application to thermo-mechanical problems , 2018, Adv. Model. Simul. Eng. Sci..

[4]  A. Huerta,et al.  Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation , 2015 .

[5]  Domain decomposition methods to evaluate effective elastic properties of random fibre composites in the framework of the double-scale homogenization , 2013 .

[6]  N. Zabaras,et al.  Thermal Response Variability of Random Polycrystalline Microstructures , 2011 .

[7]  Francisco Chinesta,et al.  Advanced thermal simulation of processes involving materials exhibiting fine-scale microstructures , 2016 .

[8]  Christian Soize,et al.  Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis , 2012, International Journal for Numerical Methods in Engineering.

[9]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[10]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[11]  Ye Lu,et al.  Multi-parametric space-time computational vademecum for parametric studies: Application to real time welding simulations , 2018 .

[12]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[13]  Wenbin Yu,et al.  A variational asymptotic micromechanics model for predicting thermoelastic properties of heterogeneous materials , 2007 .

[14]  Masaru Zako,et al.  Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty , 2008 .

[15]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[16]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[17]  P. Gosling,et al.  Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites , 2016 .

[18]  Donald F. Adams,et al.  Transverse Normal Loading of a Unidirectional Composite , 1967 .

[19]  D. Baillis,et al.  Micromechanical modeling of effective elastic properties of open-cell foam , 2017 .

[20]  Wenbin Yu,et al.  Variational asymptotic homogenization of elastoplastic composites , 2015 .

[21]  Wei Chen,et al.  A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality , 2017 .

[22]  Orion L. Kafka,et al.  Data-Driven Self-consistent Clustering Analysis of Heterogeneous Materials with Crystal Plasticity , 2018 .

[23]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[24]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[25]  J. Willis,et al.  The effect of spatial distribution on the effective behavior of composite materials and cracked media , 1995 .

[26]  N. Blal,et al.  Adaptive sparse grid based HOPGD: Toward a nonintrusive strategy for constructing space‐time welding computational vademecum , 2018 .

[27]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[28]  Miguel A. Bessa,et al.  Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials , 2016 .

[29]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[30]  L. Walpole Elastic Behavior of Composite Materials: Theoretical Foundations , 1981 .

[31]  Shaoqiang Tang,et al.  From virtual clustering analysis to self-consistent clustering analysis: a mathematical study , 2018 .

[32]  Wei Chen,et al.  Uncertainty quantification in multiscale simulation of woven fiber composites , 2018, Computer Methods in Applied Mechanics and Engineering.

[33]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[34]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[35]  Mark A Fleming,et al.  Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials , 2018 .

[36]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[37]  Christophe Geuzaine,et al.  Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation , 2012 .