Non-intrusive data learning based computational homogenization of materials with uncertainties
暂无分享,去创建一个
[1] Tian Tang,et al. Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials , 2007 .
[2] D. Jeulin,et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .
[3] Ye Lu,et al. Space–time POD based computational vademecums for parametric studies: application to thermo-mechanical problems , 2018, Adv. Model. Simul. Eng. Sci..
[4] A. Huerta,et al. Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation , 2015 .
[6] N. Zabaras,et al. Thermal Response Variability of Random Polycrystalline Microstructures , 2011 .
[7] Francisco Chinesta,et al. Advanced thermal simulation of processes involving materials exhibiting fine-scale microstructures , 2016 .
[8] Christian Soize,et al. Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis , 2012, International Journal for Numerical Methods in Engineering.
[9] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[10] R. Hill. A self-consistent mechanics of composite materials , 1965 .
[11] Ye Lu,et al. Multi-parametric space-time computational vademecum for parametric studies: Application to real time welding simulations , 2018 .
[12] C. Farhat,et al. Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .
[13] Wenbin Yu,et al. A variational asymptotic micromechanics model for predicting thermoelastic properties of heterogeneous materials , 2007 .
[14] Masaru Zako,et al. Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty , 2008 .
[15] Hervé Moulinec,et al. A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.
[16] Paul T. Boggs,et al. Sequential Quadratic Programming , 1995, Acta Numerica.
[17] P. Gosling,et al. Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites , 2016 .
[18] Donald F. Adams,et al. Transverse Normal Loading of a Unidirectional Composite , 1967 .
[19] D. Baillis,et al. Micromechanical modeling of effective elastic properties of open-cell foam , 2017 .
[20] Wenbin Yu,et al. Variational asymptotic homogenization of elastoplastic composites , 2015 .
[21] Wei Chen,et al. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality , 2017 .
[22] Orion L. Kafka,et al. Data-Driven Self-consistent Clustering Analysis of Heterogeneous Materials with Crystal Plasticity , 2018 .
[23] K. Tanaka,et al. Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .
[24] J. Willis. Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .
[25] J. Willis,et al. The effect of spatial distribution on the effective behavior of composite materials and cracked media , 1995 .
[26] N. Blal,et al. Adaptive sparse grid based HOPGD: Toward a nonintrusive strategy for constructing space‐time welding computational vademecum , 2018 .
[27] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[28] Miguel A. Bessa,et al. Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials , 2016 .
[29] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory , 1980 .
[30] L. Walpole. Elastic Behavior of Composite Materials: Theoretical Foundations , 1981 .
[31] Shaoqiang Tang,et al. From virtual clustering analysis to self-consistent clustering analysis: a mathematical study , 2018 .
[32] Wei Chen,et al. Uncertainty quantification in multiscale simulation of woven fiber composites , 2018, Computer Methods in Applied Mechanics and Engineering.
[33] S. Shtrikman,et al. A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .
[34] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[35] Mark A Fleming,et al. Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials , 2018 .
[36] W. Voigt. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .
[37] Christophe Geuzaine,et al. Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation , 2012 .