Crystalline structure and phase development in ZrxTi1-xO2 (x=0.9–0.2) ceramic nanofibers from electrospun precursors (CH-3:L03)

[1]  B. Ding,et al.  Flexible and tough zirconia-based nanofibrous membranes for thermal insulation , 2022, Composites Communications.

[2]  N. Ambalavanan,et al.  Fish skin gelatin nanofibrous scaffolds spun using alternating field electrospinning and in-vitro tested with tdTomato mice fibroblasts , 2022, Materials Today Communications.

[3]  Yongshuai Xie,et al.  Lightweight and Resilient ZrO2–TiO2 Fiber Sponges with Layered Structure for Thermal Insulation , 2022, Advanced Engineering Materials.

[4]  Guojian Yang,et al.  Highly sensitive humidity sensor based on the solid solution Zr0.2Ti0.8O2 nanofibers , 2022, Journal of Alloys and Compounds.

[5]  B. Ding,et al.  Superior Flexibility in Oxide Ceramic Crystal Nanofibers , 2021, Advanced materials.

[6]  A. Samková,et al.  Preparation of a Composite Scaffold from Polycaprolactone and Hydroxyapatite Particles by Means of Alternating Current Electrospinning , 2021, ACS omega.

[7]  J. Chvojka,et al.  Improved spinnability of PA 6 solutions using AC electrospinning , 2021 .

[8]  A. Stanishevsky,et al.  Nanofibrous TiO2 produced using alternating field electrospinning of titanium alkoxide precursors: crystallization and phase development , 2020, RSC advances.

[9]  Mingliang Sun,et al.  Facile preparation of macro-mesoporous zirconium titanate monoliths via a sol–gel reaction accompanied by phase separation , 2019, Journal of Materials Research.

[10]  A. Stanishevsky,et al.  Mechanical and transport properties of fibrous amorphous silica meshes and membranes fabricated from compressed electrospun precursor fibers , 2019 .

[11]  A. Stanishevsky,et al.  Structure and mechanical properties of nanofibrous ZrO2 derived from alternating field electrospun precursors , 2019, Ceramics International.

[12]  R. Cselkó,et al.  Corona alternating current electrospinning: A combined approach for increasing the productivity of electrospinning , 2019, International journal of pharmaceutics.

[13]  M. Edirisinghe,et al.  General Computational Methodology for Modeling Electrohydrodynamic Flows: Prediction and Optimization Capability for the Generation of Bubbles and Fibers. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[14]  A. Stanishevsky,et al.  Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning , 2019, Scientific Reports.

[15]  Ji-Huan He,et al.  Fabrication and characterization of ZrO2 nanofibers by critical bubble electrospinning for high-temperature-resistant adsorption and separation , 2019, Adsorption Science & Technology.

[16]  N. Barakat,et al.  ZrO2/TiO2 nanofiber catalyst for effective liquefaction of agricultural wastes in subcritical methanol , 2018 .

[17]  Zhigang Chen,et al.  First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling , 2018 .

[18]  Sushil Kumar,et al.  Rietveld refinement, micro-structural, optical and thermal parameters of zirconium titanate composites , 2018 .

[19]  Huajian Gao,et al.  Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges , 2017, Science Advances.

[20]  B. Ding,et al.  Soft Zr-doped TiO2 Nanofibrous Membranes with Enhanced Photocatalytic Activity for Water Purification , 2017, Scientific Reports.

[21]  A. Stanishevsky,et al.  Nanofibrous alumina structures fabricated using high-yield alternating current electrospinning , 2016 .

[22]  Sukyoung Kim,et al.  Thermal and mechanical behavior of ZrTiO4-TiO2 porous ceramics by direct foaming , 2016 .

[23]  Xianfu Chen,et al.  Fabrication of TiO2-doped ZrO2 nanofiltration membranes by using a modified colloidal sol-gel process and its application in simulative radioactive effluent , 2016 .

[24]  H. Näfe,et al.  Metastable Nanocrystalline Zirconia in Light of the Nucleation Theory , 2016 .

[25]  A. Stanishevsky,et al.  Rapid fabrication of poly(ε‐caprolactone) nanofibers using needleless alternating current electrospinning , 2016 .

[26]  Danh Bich Do,et al.  Formation of Crystal Structure of Zirconium Titanate ZrTiO4 Powders Prepared by Sol–Gel Method , 2016, Journal of Electronic Materials.

[27]  M. El-Newehy,et al.  Influence of TixZr(1−x)O2 nanofibers composition on the photocatalytic activity toward organic pollutants degradation and water splitting , 2015 .

[28]  G. D. Barmparis,et al.  Nanoparticle shapes by using Wulff constructions and first-principles calculations , 2015, Beilstein journal of nanotechnology.

[29]  P. Pokorný,et al.  Effective AC needleless and collectorless electrospinning for yarn production. , 2014, Physical chemistry chemical physics : PCCP.

[30]  Futian Liu,et al.  Fabrication of Zirconia Fibers by a Sol-Gel Combined Rotational Centrifugal Spinning Technique , 2014 .

[31]  Luyi Zhu,et al.  Preparation and characterization of the continuous titanium-doped ZrO2 mesoporous fibers with large surface area , 2014, Journal of Porous Materials.

[32]  George M. Whitesides,et al.  Electric winds driven by time oscillating corona discharges , 2013 .

[33]  Jinqiang Liu,et al.  Preparation of nanocrystalline titanium dioxide fibers using sol–gel method and centrifugal spinning , 2013, Journal of Sol-Gel Science and Technology.

[34]  L. León-Reina,et al.  Structural characterization of bulk ZrTiO4 and its potential for thermal shock applications , 2012 .

[35]  Xiaogan Li,et al.  Characterization and humidity sensitivity of electrospun ZrO2:TiO2 hetero-nanofibers with double jets , 2012 .

[36]  A. Gómez-Cortés,et al.  Synthesis of mixed ZrO2–TiO2 oxides by sol–gel: Microstructural characterization and infrared spectroscopy studies of NOx , 2008 .

[37]  Heechul Choi,et al.  Synthesis and characterization of ZrO2–TiO2 binary oxide semiconductor nanoparticles: Application and interparticle electron transfer process , 2007 .

[38]  U. Troitzsch TiO2‐Doped Zirconia: Crystal Structure, Monoclinic‐Tetragonal Phase Transition, and the New Tetragonal Compound Zr3TiO8 , 2006 .

[39]  S. Koç Zirconium titanate synthesis by diethanol amine based sol-gel route , 2006 .

[40]  I. Cosentino,et al.  Low-Temperature Sol-Gel Synthesis of Single-Phase ZrTiO4 Nanoparticles , 2006 .

[41]  Ataullah Khan,et al.  Recent Advances on TiO2‐ZrO2 Mixed Oxides as Catalysts and Catalyst Supports , 2005 .

[42]  X. Jiao,et al.  Synthesis of long ZrTiO4 fibers by a sol–gel process free of organic components , 2003 .

[43]  Younan Xia,et al.  Fabrication of Titania Nanofibers by Electrospinning , 2003 .

[44]  H. Preiss,et al.  Synthesis of polymeric titanium and zirconium precursors and preparation of carbide fibres and films , 1998 .

[45]  S. Bruque,et al.  Zirconium Titanate from Sol–Gel Synthesis: Thermal Decomposition and Quantitative Phase Analysis , 1998 .

[46]  M. Daglish,et al.  Decomposition of Coordinated Acetylacetonate in Lead Zirconate Titanate (PZT) Precursor Solutions , 1998 .

[47]  Tsutomu Yamaguchi Application of ZrO2 as a catalyst and a catalyst support , 1994 .

[48]  M. Anderson,et al.  Sol–Gel Route to Synthesis of Microporous Ceramic Membranes: Thermal Stability of TiO2–ZrO2Mixed Oxides , 1993 .

[49]  M. Anderson,et al.  Synthesis of porosity controlled ceramic membranes , 1991 .

[50]  Jenn–Ming Wu,et al.  ZrO2-TiO2 ceramic humidity sensors , 1991 .

[51]  J. M. Barnes,et al.  Solubility of TiO2 in ZrO2 , 1986 .