Global exact controllability in infinite time of Schrödinger equation: multidimensional case

We prove that the multidimensional Schr\"odinger equation is exactly controllable in infinite time near any point which is a finite linear combination of eigenfunctions of the Schr\"odinger operator. We prove that, generically with respect to the potential, the linearized system is controllable in infinite time. Applying the inverse mapping theorem, we prove the controllability of the nonlinear system.

[1]  Jean-Paul Penot,et al.  Inversion of multifunctions and differential inclusions , 2005 .

[2]  Herschel Rabitz,et al.  Quantum wavefunction controllability , 2001 .

[3]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[4]  Vahagn Nersesyan,et al.  Global approximate controllability for Schr\"odinger equation in higher Sobolev norms and applications , 2009, 0905.2438.

[5]  Mario Sigalotti,et al.  The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent , 2008 .

[6]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[7]  Claudio Altafini,et al.  Controllability of quantum mechanical systems by root space decomposition of su(N) , 2002 .

[8]  Mario Sigalotti,et al.  Generic controllability properties for the bilinear Schrödinger equation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[9]  Karine Beauchard,et al.  Local controllability of 1D linear and nonlinear Schr , 2010, 1001.3288.

[10]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[11]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[12]  Enrique Zuazua,et al.  Remarks on the controllability of the Schrödinger equation , 2002, CRM Workshop.

[13]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[14]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[15]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[16]  S. Avdonin Riesz bases of exponential functions in L2 , 1977 .

[17]  A. Shirikyan Euler equations are not exactly controllable by a finite-dimensional external force , 2007, 0708.0520.

[18]  M. Mirrahimi Lyapunov control of a particle in a finite quantum potential well , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[19]  Mario Sigalotti,et al.  Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.

[20]  H. Nersisyan Controllability of 3D incompressible Euler equations by a finite-dimensional external force , 2008, 0810.3297.

[21]  Mazyar Mirrahimi,et al.  Implicit Lyapunov control of finite dimensional Schrödinger equations , 2007, Syst. Control. Lett..

[22]  V. Nersesyan Growth of Sobolev Norms and Controllability of the Schrödinger Equation , 2008, 0804.3982.

[23]  M. Slemrod,et al.  Controllability of distributed bilinear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[24]  Gilles Lebeau,et al.  Stabilization and Control for the Nonlinear Schrödinger Equation on a Compact Surface , 2006 .

[25]  Karine Beauchard,et al.  Spectral controllability for 2D and 3D linear Schrödinger equations , 2009 .

[26]  Karine Beauchard,et al.  Approximate stabilization of a quantum particle in a 1D infinite square potential well , 2008, 0801.1522.

[27]  Karine Beauchard,et al.  Spectral controllability for 2D and 3D linear Schrödinger equations , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[28]  G. Lebeau Contrôle de l'équation de Schrödinger , 1992 .

[29]  E. Zuazua,et al.  Stabilization of the Schrödinger equation. , 1994 .

[30]  Andrei A. Agrachev,et al.  An estimation of the controllability time for single-input systems on compact Lie Groups , 2006 .

[31]  Sylvain Ervedoza,et al.  Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion , 2009 .

[32]  R. MacKay INTRODUCTION TO THE MODERN THEORY OF DYNAMICAL SYSTEMS (Encyclopaedia of Mathematics and its Applications 54) , 1997 .

[33]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[34]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[35]  Gabriel Turinici,et al.  On the controllability of bilinear quantum systems , 2000 .

[36]  Lucie Baudouin,et al.  Uniqueness and stability in an inverse problem for the Schrödinger equation , 2007 .