Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes of Defined Chiral Structure

We simultaneously determined the physical structure and optical transition energies of individual single-walled carbon nanotubes by combining electron diffraction with Rayleigh scattering spectroscopy. These results test fundamental features of the excited electronic states of carbon nanotubes. We directly verified the systematic changes in transition energies of semiconducting nanotubes as a function of their chirality and observed predicted energy splittings of optical transitions in metallic nanotubes.

[1]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[2]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[3]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[4]  John W. Mintmire,et al.  Universal Density of States for Carbon Nanotubes , 1998 .

[5]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[6]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[7]  Riichiro Saito,et al.  Trigonal warping effect of carbon nanotubes , 2000 .

[8]  S. Reich,et al.  Chirality dependence of the density-of-states singularities in carbon nanotubes , 2000 .

[9]  Zhonghua Yu,et al.  (n, m) Structural Assignments and Chirality Dependence in Single-Wall Carbon Nanotube Raman Scattering , 2001 .

[10]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[11]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[12]  J. Zuo,et al.  Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction , 2003 .

[13]  M. Dresselhaus,et al.  Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters , 2004 .

[14]  E. Chang,et al.  Excitons in carbon nanotubes: an ab initio symmetry-based approach. , 2004, Physical review letters.

[15]  H Telg,et al.  Chirality distribution and transition energies of carbon nanotubes. , 2004, Physical review letters.

[16]  Phaedon Avouris,et al.  Scaling of excitons in carbon nanotubes. , 2004, Physical review letters.

[17]  Limin Huang,et al.  Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition , 2004 .

[18]  S. Louie,et al.  Excitonic effects and optical spectra of single-walled carbon nanotubes. , 2003, Physical review letters.

[19]  M. Dresselhaus,et al.  Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. , 2004, Physical review letters.

[20]  Electron interactions and scaling relations for optical excitations in carbon nanotubes. , 2004, Physical review letters.

[21]  M. Sfeir,et al.  Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering , 2004, Science.

[22]  Louis E. Brus,et al.  The Optical Resonances in Carbon Nanotubes Arise from Excitons , 2005, Science.

[23]  Raman modes of index-identified freestanding single-walled carbon nanotubes. , 2005, Physical review letters.

[24]  J. Maultzsch,et al.  Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment , 2005 .

[25]  Juan E Peralta,et al.  Optical transitions in metallic single-walled carbon nanotubes. , 2005, Nano letters.

[26]  M. Dresselhaus,et al.  Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes , 2005 .

[27]  Christian Thomsen,et al.  Strength of radial breathing mode in single-walled carbon nanotubes , 2005 .