Role of Climate Change in Global Predictions of Future Tropospheric Ozone and Aerosols

[1] A unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies general circulation model II' is applied to simulate an equilibrium CO 2 -forced climate in the year 2100 to examine the effects of climate change on global distributions of tropospheric ozone and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols. The year 2100 CO 2 concentration as well as the anthropogenic emissions of ozone precursors and aerosols/aerosol precursors are based on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A2. Year 2100 global O 3 and aerosol burdens predicted with changes in both climate and emissions are generally 5-20% lower than those simulated with changes in emissions alone; as exceptions, the nitrate burden is 38% lower, and the secondary organic aerosol burden is 17% higher. Although the CO 2 -driven climate change alone is predicted to reduce the global O 3 burden as a result of faster removal of O 3 in a warmer climate, it is predicted to increase surface layer O 3 concentrations over or near populated and biomass burning areas because of slower transport, enhanced biogenic hydrocarbon emissions, decomposition of peroxyacetyl nitrate at higher temperatures, and the increase of O 3 production by increased water vapor at high NO x levels. The warmer climate influences aerosol burdens by increasing aerosol wet deposition, altering climate-sensitive emissions, and shifting aerosol thermodynamic equilibrium. Climate change affects the estimates of the year 2100 direct radiative forcing as a result of the climate-induced changes in burdens and different climatological conditions; with full gas-aerosol coupling and accounting for ozone and aerosols from both natural and anthropogenic sources, year 2100 global mean top of the atmosphere direct radiative forcings by O 3 , sulfate, nitrate, black carbon, and organic carbon are predicted to be +0.93, -0.72, -1.0, +1.26, and -0.56 W m -2 , respectively, using present-day climate and year 2100 emissions, while they are predicted to be +0.76, -0.72, -0.74, +0.97, and -0.58 W m -2 , respectively, with year 2100 climate and emissions.

[1]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[2]  Philip W. Goetz The New Encyclopaedia Britannica , 1991 .

[3]  D. Stevenson,et al.  Role of climate feedback on methane and ozone studied with a Coupled Ocean‐Atmosphere‐Chemistry Model , 2001 .

[4]  J. Lerner,et al.  Use of On-Line Tracers as a Diagnostic Tool in General Circulation Model Development , 1999 .

[5]  Henry Demarest Lloyd,et al.  Wealth Against Commonwealth , 1894 .

[6]  David Rind,et al.  Climate change and the middle atmosphere. I - The doubled CO2 climate , 1990 .

[7]  John H. Seinfeld,et al.  Interactions between tropospheric chemistry and aerosols in a unified general circulation model , 2003 .

[8]  Thomas M. Smith,et al.  Seasonal oceanic heat transports computed from an atmospheric model and ocean temperature climatology , 1989 .

[9]  D. Stevenson,et al.  Relative roles of climate and emissions changes on future tropospheric oxidant concentrations , 1999 .

[10]  J. Seinfeld,et al.  General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system , 2001 .

[11]  J. Lerner,et al.  Changes of tracer distributions in the doubled CO2 climate , 2001 .

[12]  D. Koch Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM , 2001 .

[13]  G. Watts,et al.  Climate Change 1995 , 1998 .

[14]  R. Warrick,et al.  The Greenhouse Effect and Climate Change , 1996 .

[15]  J. Wilson,et al.  Appletons' Cyclopædia of American Biography , 1887 .

[16]  Joyce E. Penner,et al.  Towards the development of a global inventory for black carbon emissions , 1993 .

[17]  M. Smith,et al.  The sea spray generation function , 1998 .

[18]  L. Merlivat,et al.  Air-Sea Gas Exchange Rates: Introduction and Synthesis , 1986 .

[19]  Richard G. Derwent,et al.  Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere , 2003 .

[20]  T. Iversen,et al.  A scheme for process‐tagged SO4 and BC aerosols in NCAR CCM3: Validation and sensitivity to cloud processes , 2002 .

[21]  J. Haigh,et al.  A tropospheric ozone‐lightning climate feedback , 1996 .

[22]  John H. Seinfeld,et al.  Global impacts of gas‐phase chemistry‐aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone , 2005 .

[23]  John H. Seinfeld,et al.  Organic aerosol formation from the oxidation of biogenic hydrocarbons , 1999 .

[24]  R. Monson,et al.  Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem , 2003, Nature.

[25]  David Rind,et al.  Radiative forcing from tropospheric ozone calculated with a unified chemistry-climate model , 1999 .

[26]  P. Hess,et al.  How does climate change contribute to surface ozone change over the United States , 2006 .

[27]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[28]  P. Crutzen,et al.  Human‐activity‐enhanced formation of organic aerosols by biogenic hydrocarbon oxidation , 2000 .

[29]  K. Shine Radiative Forcing of Climate Change , 2000 .

[30]  Ruth Doherty,et al.  Impacts of climate change and variability on tropospheric ozone and its precursors. , 2005, Faraday discussions.

[31]  A. Bouwman,et al.  A global high‐resolution emission inventory for ammonia , 1997 .

[32]  D. Rind,et al.  Climate Change and the Middle Atmosphere. Part III: The Doubled CO2 Climate Revisited , 1998 .

[33]  R. A. Cox,et al.  Hydrolysis of N2O5 on sub-micron mineral salt aerosols , 2003 .

[34]  Dale A. Gillette,et al.  A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production , 1978 .

[35]  D. Dokken,et al.  Climate change 2001 , 2001 .

[36]  M. Silk Homer. The Iliad , 2004 .

[37]  Patrick L. Kinney,et al.  Simulating regional-scale ozone climatology over the eastern United States: model evaluation results , 2004 .

[38]  D. Jacob,et al.  Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH , 2005, Geophysical Research Letters.

[39]  Gerhard Krinner,et al.  Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model , 2005 .

[40]  C. Senior,et al.  Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols , 1998 .

[41]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[42]  Didier Hauglustaine,et al.  Past and future changes in global tropospheric ozone: Impact on radiative forcing , 1998 .

[43]  K. Sudo,et al.  Future changes in stratosphere‐troposphere exchange and their impacts on future tropospheric ozone simulations , 2003 .

[44]  John F. B. Mitchell,et al.  THE "GREENHOUSE" EFFECT AND CLIMATE CHANGE , 1989 .

[45]  Some dynamical consequences of Greenhouse gas warming , 1995 .

[46]  D. Jacob,et al.  Climate response to the increase in tropospheric ozone since preindustrial times: A comparison between ozone and equivalent CO2 forcings , 2004 .

[47]  H. Levy,et al.  Empirical model of global soil‐biogenic NOχ emissions , 1995 .

[48]  Donald J. Wuebbles,et al.  Radiative forcing of climate , 1991 .

[49]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[50]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[51]  D. E. Spiel,et al.  A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption , 1986 .

[52]  P. Buat-Ménard The role of air-sea exchange in geochemical cycling , 1986 .

[53]  J. Lerner,et al.  Use of on-line tracers as a diagnostic tool in general circulation model development 1. Horizontal and vertical transport in the troposphere , 1996 .

[54]  G. Russell,et al.  Research paperSeasonal oceanic heat transports computed from an atmospheric model , 1985 .

[55]  J. Maitland Grove's Dictionary of Music and Musicians , 1905 .

[56]  Giacomo R. DiTullio,et al.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month , 1999 .

[57]  J. Penner,et al.  A global three‐dimensional model study of carbonaceous aerosols , 1996 .

[58]  G. Pétron,et al.  Seasonal temperature variations influence isoprene emission , 2001 .

[59]  Simulated Changes in Atmospheric Transport Climate , 2001 .

[60]  J. Dufresne,et al.  Will marine dimethylsulfide emissions amplify or alleviate global warming? A model study , 2004 .

[61]  Richard G. Derwent,et al.  Effect of stratosphere‐troposphere exchange on the future tropospheric ozone trend , 2003 .

[62]  R. Monson,et al.  Modelling changes in VOC emission in response to climate change in the continental United States , 1999 .

[63]  J. Seinfeld,et al.  Effect of clouds on direct aerosol radiative forcing of climate , 1997 .

[64]  David Rind,et al.  The Effects of Physical Processes on the Hadley Circulation. , 1984 .

[65]  James J. Hack,et al.  The Climate Sensitivity of the Community Climate System Model Version 3 (CCSM3) , 2006 .

[66]  C. Tubbs,et al.  The New Forest , 1986 .

[67]  Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 1. Model formulation , 1998 .

[68]  Donald Dabdub,et al.  Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons , 1999 .

[69]  J. Pyle,et al.  Changes in tropospheric ozone between 2000 and 2100 modeled in a chemistry‐climate model , 2003 .

[70]  J. Seinfeld,et al.  Global distribution and climate forcing of carbonaceous aerosols , 2002 .

[71]  A. Sinha,et al.  Tropospheric ozone, lightning, and climate change , 1997 .

[72]  Silvia K. Burack The Writer's Handbook , 1941 .

[73]  Colin Price,et al.  Climate Change and its Effect on Tropospheric Ozone , 1995 .

[74]  J. A. H. Murray New English dictionary. , 1887 .

[75]  C. Jones,et al.  Effect of Climate Change on Isoprene Emissions and Surface Ozone Levels , 2003 .

[76]  John H. Seinfeld,et al.  Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model , 2004 .

[77]  A. Nenes,et al.  ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols , 1998 .

[78]  G. Russell,et al.  Annual oceanic heat transports computed from an atmospheric model , 1983 .

[79]  Tom M. L. Wigley,et al.  Climates of the Twentieth and Twenty-First Centuries Simulated by the NCAR Climate System Model , 2001 .