Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging

Aerosols are believed to play a direct role in the radiation budget of Earth, but their net radiative effect is not well established, particularly on regional scales. Whether aerosols heat or cool a given location depends on their composition and column amount and on the surface albedo, information that is not routinely available, especially over land. Obtaining global information on aerosol and surface radiative characteristics, over both ocean and land, is a task of the Multi-angle Imaging SpectroRadiometer (MISR), an instrument to be launched in 1998 on the Earth Observing System EOS-AM1 platform. Three algorithms are described that will be implemented to retrieve aerosol properties globally using MISR data. Because of the large volume of data to be processed on a daily basis, these algorithms rely on lookup tables of atmospheric radiative parameters and predetermined aerosol mixture models to expedite the radiative transfer (RT) calculations. Over oceans, the "dark water" algorithm is used, taking full advantage of the nature of the MISR data. Over land, a choice of algorithms is made, depending on the surface types within a scene-dark water bodies, heavily vegetated areas, or high-contrast terrain. The retrieval algorithms are tested on simulated MISR data, computed using realistic aerosol and surface reflectance models. The results indicate that aerosol optical depth can be retrieved with an accuracy of 0.05 or 10%, whichever is greater, and some information can be obtained about the aerosol chemical and physical properties.

[1]  G. E. Hunt,et al.  Solution of Radiative Transfer Problems Using the Invariant Sn Method , 1968 .

[2]  David J. Diner,et al.  A modified linear‐mixing method for calculating atmospheric path radiances of aerosol mixtures , 1997 .

[3]  Didier Tanré,et al.  Multi-band automatic sun and sky scanning radiometer system for measurement of aerosols , 1994 .

[4]  David J. Diner,et al.  Development of an aerosol opacity retrieval algorithm for use with multi-angle land surface images , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[5]  D. Diner,et al.  Atmospheric transmittance from spacecraft using multiple view angle imagery. , 1985, Applied optics.

[6]  J. Kiehl,et al.  The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing , 1993, Science.

[7]  Larry D. Travis,et al.  Light scattering by polydisperse, rotationally symmetric nonspherical particles: Linear polarization , 1994 .

[8]  R. S. Fraser Satellite measurement of mass of Sahara dust in the atmosphere. , 1976, Applied optics.

[9]  R. Myneni,et al.  Radiative transfer in three-dimensional atmosphere-vegetation media , 1993 .

[10]  Eric P. Shettle,et al.  Atmospheric Aerosols: Global Climatology and Radiative Characteristics , 1991 .

[11]  D. Kimes Dynamics of directional reflectance factor distributions for vegetation canopies. , 1983, Applied optics.

[12]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[13]  Craig S. Long,et al.  using the NOAA/AVHRR to study stratospheric aerosol optical thicknesses following the Mt. Pinatubo Eruption , 1994 .

[14]  C. J. I twcgge,et al.  MISR radiometric uncertainty analyses and their utilization within geophysical retrievals , 1999 .

[15]  John Martonchik,et al.  Atmospheric Correction of Vegetation Index Using Multi-Angle Measurements , 1995 .

[16]  P Koepke,et al.  Effective reflectance of oceanic whitecaps. , 1984, Applied optics.

[17]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[18]  Yuri Knyazikhin,et al.  Level 2 Ancillary Products and Datasets Algorithm Theoretical Basis , 1999 .

[19]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[20]  Robert A. West,et al.  Sensitivity of multiangle remote sensing observations to aerosol sphericity , 1997 .

[21]  G. Krekov,et al.  Models of atmospheric aerosols , 1993 .

[22]  Compton J. Tucker,et al.  Directional reflectance factor distributions for cover types of Northern Africa , 1985 .

[23]  John V. Martonchik,et al.  Determination of aerosol optical depth and land surface directional reflectances using multiangle imagery , 1997 .

[24]  H. Gordon,et al.  Radiance reflected from the ocean-atmosphere system: synthesis from individual components of the aerosol size distribution. , 1994, Applied optics.

[25]  M. Andreae Chapter 10 – Climatic effects of changing atmospheric aerosol levels , 1995 .

[26]  D. Deering,et al.  A sphere-scanning radiometer for rapid directional measurements of sky and ground radiance: The PARABOLA field instrument , 1984 .

[27]  Edward C. Monahan,et al.  Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed , 1980 .

[28]  David J. Diner,et al.  Retrieval of aerosol optical properties from multi-angle satellite imagery , 1992, IEEE Trans. Geosci. Remote. Sens..

[29]  Paul Pellegrino,et al.  Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data , 1992 .

[30]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[31]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[32]  Larry L. Stowe,et al.  Remote sensing of aerosols over the oceans using AVHRR data Theory, practice and applications , 1989 .

[33]  D. Kimes,et al.  Directional Scattering Properties of a Wintering Deciduous Hardwood Canopy , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[34]  H. Gordon,et al.  Estimating aerosol optical properties over the oceans with the multiangle imaging spectroadiometer: some preliminary studies. , 1994, Applied optics.

[35]  David J. Diner,et al.  MISR radiometric uncertainty analyses and their utilization within geophysical retrievals , 1998 .

[36]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[37]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[38]  H. Rahman,et al.  Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data , 1993 .

[39]  M. Griggs,et al.  Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. , 1975, Journal of the Air Pollution Control Association.

[40]  Ross Nelson,et al.  Directional Reflectance Distributions of a Hardwood and Pine Forest Canopy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[41]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[42]  Barbara E. Carlson,et al.  Nonsphericity of dust‐like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling , 1995 .

[43]  M. Griggs Satellite Measurements Of Tropospheric Aerosols , 1979, Optics & Photonics.

[44]  David J. Diner,et al.  Sensitivity of multiangle imaging to aerosol optical depth and to pure‐particle size distribution and composition over ocean , 1998 .

[45]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .