Two-point function of the energy-momentum tensor and generalised conformal structure
暂无分享,去创建一个
[1] L. Debbio,et al. Towards a holographic description of cosmology: Renormalisation of the energy-momentum tensor of the dual QFT , 2019, Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019).
[2] Matteo Maria Maglio,et al. Exact correlators from conformal Ward identities in momentum space and the perturbative TJJ vertex , 2018, Nuclear Physics B.
[3] Matteo Maria Maglio,et al. The general 3-graviton vertex (TTT) of conformal field theories in momentum space in d = 4 , 2018, Nuclear Physics B.
[4] M. Taylor. Generalized conformal structure, dilaton gravity and SYK , 2017, 1706.07812.
[5] Kostas Skenderis,et al. Constraining holographic cosmology using Planck data , 2017, 1703.05385.
[6] Kostas Skenderis,et al. From Planck Data to Planck Era: Observational Tests of Holographic Cosmology. , 2016, Physical review letters.
[7] J. Maldacena,et al. Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.
[8] Kostas Skenderis,et al. Scalar 3-point functions in CFT: renormalisation, beta functions and anomalies , 2015, 1510.08442.
[9] Kostas Skenderis,et al. Comments on scale and conformal invariance , 2014 .
[10] Kostas Skenderis,et al. Comments on scale and conformal invariance in four dimensions , 2014, 1402.3208.
[11] Anatoly Dymarsky,et al. On scale and conformal invariance in four dimensions , 2013, 1309.2921.
[12] Kostas Skenderis,et al. Implications of conformal invariance in momentum space , 2013, 1304.7760.
[13] Yu Nakayama,et al. Scale invariance vs conformal invariance , 2013, 1302.0884.
[14] J. Polchinski,et al. The a-theorem and the asymptotics of 4D quantum field theory , 2012, 1204.5221.
[15] L. Delle Rose,et al. Three and four point functions of stress energy tensors in D = 3 for the analysis of cosmological non-gaussianities , 2012, 1210.0136.
[16] Kostas Skenderis,et al. Holographic predictions for cosmological 3-point functions , 2011, 1112.1967.
[17] J. Maldacena,et al. On graviton non-gaussianities during inflation , 2011, 1104.2846.
[18] Kostas Skenderis,et al. Constraining holographic inflation with WMAP , 2011, 1104.2040.
[19] L. D. Rose,et al. Gravity and the neutral currents: Effective interactions from the trace anomaly , 2011, 1102.4558.
[20] S. Rychkov,et al. What Maxwell Theory in D 4 teaches us about scale and conformal invariance , 2011, 1101.5385.
[21] R. Jackiw,et al. Tutorial on scale and conformal symmetries in diverse dimensions , 2011, 1101.4886.
[22] Kostas Skenderis,et al. Holographic Non-Gaussianity , 2010, 1011.0452.
[23] L. D. Rose,et al. Trace anomaly, massless scalars, and the gravitational coupling of QCD , 2010, 1005.4173.
[24] Paul L. McFadden,et al. The holographic universe , 2010, 1001.2007.
[25] L. D. Rose,et al. Conformal anomalies and the gravitational effective action: The TJJ correlator for a Dirac fermion , 2009, 0910.3381.
[26] Paul L. McFadden,et al. Holography for Cosmology , 2009, 0907.5542.
[27] I. Kanitscheider,et al. Universal hydrodynamics of non-conformal branes , 2009, 0901.1487.
[28] M. Giannotti,et al. Trace anomaly and massless scalar degrees of freedom in gravity , 2008, 0812.0351.
[29] I. Kanitscheider,et al. Precision holography for non-conformal branes , 2008, Journal of High Energy Physics.
[30] Pierre Mathieu,et al. Conformal Field Theory , 1999 .
[31] Y. Kazama,et al. Generalized conformal symmetry in D-brane matrix models , 1998, hep-th/9810146.
[32] Kostas Skenderis,et al. The domain wall / QFT correspondence , 1998, hep-th/9807137.
[33] A. Jevicki,et al. Space-time uncertainty principle and conformal symmetry in D-particle dynamics , 1998, hep-th/9805069.
[34] J. Maldacena,et al. Supergravity and The Large N Limit of Theories With Sixteen Supercharges , 1998, hep-th/9802042.
[35] R. Mertig,et al. TARCER — A mathematica program for the reduction of two-loop propagator integrals , 1998, hep-ph/9801383.
[36] O. Tarasov. Generalized recurrence relations for two-loop propagator integrals with arbitrary masses , 1997, hep-ph/9703319.
[37] Tarasov. Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.
[38] O. W. Greenberg,et al. The Quantum Theory of Fields, Vol. 1: Foundations , 1995 .
[39] S. Weinberg. The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .
[40] Joseph Polchinski,et al. Scale and Conformal Invariance in Quantum Field Theory , 1988 .
[41] Alexander B. Zamolodchikov,et al. Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory , 1986 .
[42] H. Osborn,et al. Background field calculations in curved spacetime. I: General formalism and application to scalar fields , 1984 .
[43] I. Jack. Two-loop background field calculations for gauge theories with scalar fields , 1983 .
[44] H. Osborn,et al. Two-loop background field calculations for arbitrary background fields , 1982 .
[45] R. Jackiw,et al. How super-renormalizable interactions cure their infrared divergences , 1981 .
[46] T. Appelquist,et al. High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics , 1981 .