Two-point function of the energy-momentum tensor and generalised conformal structure

[1]  L. Debbio,et al.  Towards a holographic description of cosmology: Renormalisation of the energy-momentum tensor of the dual QFT , 2019, Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019).

[2]  Matteo Maria Maglio,et al.  Exact correlators from conformal Ward identities in momentum space and the perturbative TJJ vertex , 2018, Nuclear Physics B.

[3]  Matteo Maria Maglio,et al.  The general 3-graviton vertex (TTT) of conformal field theories in momentum space in d = 4 , 2018, Nuclear Physics B.

[4]  M. Taylor Generalized conformal structure, dilaton gravity and SYK , 2017, 1706.07812.

[5]  Kostas Skenderis,et al.  Constraining holographic cosmology using Planck data , 2017, 1703.05385.

[6]  Kostas Skenderis,et al.  From Planck Data to Planck Era: Observational Tests of Holographic Cosmology. , 2016, Physical review letters.

[7]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[8]  Kostas Skenderis,et al.  Scalar 3-point functions in CFT: renormalisation, beta functions and anomalies , 2015, 1510.08442.

[9]  Kostas Skenderis,et al.  Comments on scale and conformal invariance , 2014 .

[10]  Kostas Skenderis,et al.  Comments on scale and conformal invariance in four dimensions , 2014, 1402.3208.

[11]  Anatoly Dymarsky,et al.  On scale and conformal invariance in four dimensions , 2013, 1309.2921.

[12]  Kostas Skenderis,et al.  Implications of conformal invariance in momentum space , 2013, 1304.7760.

[13]  Yu Nakayama,et al.  Scale invariance vs conformal invariance , 2013, 1302.0884.

[14]  J. Polchinski,et al.  The a-theorem and the asymptotics of 4D quantum field theory , 2012, 1204.5221.

[15]  L. Delle Rose,et al.  Three and four point functions of stress energy tensors in D = 3 for the analysis of cosmological non-gaussianities , 2012, 1210.0136.

[16]  Kostas Skenderis,et al.  Holographic predictions for cosmological 3-point functions , 2011, 1112.1967.

[17]  J. Maldacena,et al.  On graviton non-gaussianities during inflation , 2011, 1104.2846.

[18]  Kostas Skenderis,et al.  Constraining holographic inflation with WMAP , 2011, 1104.2040.

[19]  L. D. Rose,et al.  Gravity and the neutral currents: Effective interactions from the trace anomaly , 2011, 1102.4558.

[20]  S. Rychkov,et al.  What Maxwell Theory in D 4 teaches us about scale and conformal invariance , 2011, 1101.5385.

[21]  R. Jackiw,et al.  Tutorial on scale and conformal symmetries in diverse dimensions , 2011, 1101.4886.

[22]  Kostas Skenderis,et al.  Holographic Non-Gaussianity , 2010, 1011.0452.

[23]  L. D. Rose,et al.  Trace anomaly, massless scalars, and the gravitational coupling of QCD , 2010, 1005.4173.

[24]  Paul L. McFadden,et al.  The holographic universe , 2010, 1001.2007.

[25]  L. D. Rose,et al.  Conformal anomalies and the gravitational effective action: The TJJ correlator for a Dirac fermion , 2009, 0910.3381.

[26]  Paul L. McFadden,et al.  Holography for Cosmology , 2009, 0907.5542.

[27]  I. Kanitscheider,et al.  Universal hydrodynamics of non-conformal branes , 2009, 0901.1487.

[28]  M. Giannotti,et al.  Trace anomaly and massless scalar degrees of freedom in gravity , 2008, 0812.0351.

[29]  I. Kanitscheider,et al.  Precision holography for non-conformal branes , 2008, Journal of High Energy Physics.

[30]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[31]  Y. Kazama,et al.  Generalized conformal symmetry in D-brane matrix models , 1998, hep-th/9810146.

[32]  Kostas Skenderis,et al.  The domain wall / QFT correspondence , 1998, hep-th/9807137.

[33]  A. Jevicki,et al.  Space-time uncertainty principle and conformal symmetry in D-particle dynamics , 1998, hep-th/9805069.

[34]  J. Maldacena,et al.  Supergravity and The Large N Limit of Theories With Sixteen Supercharges , 1998, hep-th/9802042.

[35]  R. Mertig,et al.  TARCER — A mathematica program for the reduction of two-loop propagator integrals , 1998, hep-ph/9801383.

[36]  O. Tarasov Generalized recurrence relations for two-loop propagator integrals with arbitrary masses , 1997, hep-ph/9703319.

[37]  Tarasov Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.

[38]  O. W. Greenberg,et al.  The Quantum Theory of Fields, Vol. 1: Foundations , 1995 .

[39]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[40]  Joseph Polchinski,et al.  Scale and Conformal Invariance in Quantum Field Theory , 1988 .

[41]  Alexander B. Zamolodchikov,et al.  Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory , 1986 .

[42]  H. Osborn,et al.  Background field calculations in curved spacetime. I: General formalism and application to scalar fields , 1984 .

[43]  I. Jack Two-loop background field calculations for gauge theories with scalar fields , 1983 .

[44]  H. Osborn,et al.  Two-loop background field calculations for arbitrary background fields , 1982 .

[45]  R. Jackiw,et al.  How super-renormalizable interactions cure their infrared divergences , 1981 .

[46]  T. Appelquist,et al.  High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics , 1981 .