New Quantum MDS Codes From Negacyclic Codes

Let <i>q</i> be an odd prime power. Based on classical negacyclic codes, we construct two classes of quantum maximum-distance-separable (MDS) codes with parameters [[<i>q</i><sup>2</sup>+1, <i>q</i><sup>2</sup>-2<i>d</i>+3, <i>d</i>]]<i>q</i> where <i>q</i> ≡ 1 (mod 4) and 2 ≤ <i>d</i> ≤ <i>q</i>+1 is even, and [[(<i>q</i><sup>2</sup>+1)/2,(<i>q</i><sup>2</sup>+1)/2-2<i>d</i>+2,<i>d</i>]]<i>q</i> where 3 ≤ <i>d</i> ≤ <i>q</i> is odd. Some of these quantum MDS codes are new in the sense that their parameters are different from all the previously known ones.

[1]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[2]  Dilip V. Sarwate,et al.  Pseudocyclic maximum- distance-separable codes , 1990, IEEE Trans. Inf. Theory.

[3]  Keqin Feng,et al.  Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p (p >= 3) exist , 2002, IEEE Trans. Inf. Theory.

[4]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[5]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[6]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[7]  Giuliano G. La Guardia,et al.  New Quantum MDS Codes , 2011, IEEE Transactions on Information Theory.

[8]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Zongben Xu,et al.  On [[n,n-4,3]]q Quantum MDS Codes for odd prime power q , 2009, ArXiv.

[10]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[11]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[12]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[13]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[14]  Keqin Feng,et al.  Quantum Codes and Exist , 2002 .

[15]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[16]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[17]  Martin Rötteler,et al.  On quantum MDS codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[18]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[19]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[20]  Gérard D. Cohen,et al.  On binary constructions of quantum codes , 1999, IEEE Trans. Inf. Theory.

[21]  I. Fuss,et al.  Quantum Reed-Muller codes , 1997, quant-ph/9703045.

[22]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[23]  H. Chau Five quantum register error correction code for higher spin systems , 1997, quant-ph/9702033.

[24]  Qing Chen,et al.  Graphical Nonbinary Quantum Error-Correcting Codes , 2008 .

[25]  Chaoping Xing,et al.  Generalization of Steane's Enlargement Construction of Quantum Codes and Applications , 2010, IEEE Transactions on Information Theory.

[26]  Pradeep Kiran Sarvepalli,et al.  Nonbinary quantum Reed-Muller codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..