Gain-of-function mutations in the UNC-2/CaV2α channel lead to excitation-dominant synaptic transmission in Caenorhabditis elegans

Mutations in pre-synaptic voltage-gated calcium channels can lead to familial hemiplegic migraine type 1 (FHM1). While mammalian studies indicate that the migraine brain is hyperexcitable due to enhanced excitation or reduced inhibition, the molecular and cellular mechanisms underlying this excitatory/inhibitory (E/I) imbalance are poorly understood. We identified a gain-of-function (gf) mutation in the Caenorhabditis elegans CaV2 channel α1 subunit, UNC-2, which leads to increased calcium currents. unc-2(zf35gf) mutants exhibit hyperactivity and seizure-like motor behaviors. Expression of the unc-2 gene with FHM1 substitutions R192Q and S218L leads to hyperactivity similar to that of unc-2(zf35gf) mutants. unc-2(zf35gf) mutants display increased cholinergic and decreased GABAergic transmission. Moreover, increased cholinergic transmission in unc-2(zf35gf) mutants leads to an increase of cholinergic synapses and a TAX-6/calcineurin-dependent reduction of GABA synapses. Our studies reveal mechanisms through which CaV2 gain-of-function mutations disrupt excitation-inhibition balance in the nervous system.

[1]  T. Douglas Genetic selection , 2019, Ethics and the Contemporary World.

[2]  Mark J Alkema,et al.  Neurexin directs partner-specific synaptic connectivity in C. elegans , 2018, eLife.

[3]  Zhitao Hu,et al.  Spontaneous Vesicle Fusion Is Differentially Regulated at Cholinergic and GABAergic Synapses. , 2018, Cell reports.

[4]  R. Meredith,et al.  Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders , 2018, F1000Research.

[5]  Mark J Alkema,et al.  Excitatory motor neurons are local oscillators for backward locomotion , 2017, eLife.

[6]  Belinda Barbagallo,et al.  Excitatory neurons sculpt GABAergic neuronal connectivity in the C. elegans motor circuit , 2017, Development.

[7]  Yishi Jin,et al.  Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca2+ Sensor Protein. , 2017, Cell reports.

[8]  J. Liewald,et al.  RIC-3 phosphorylation enables dual regulation of excitation and inhibition of Caenorhabditis elegans muscle , 2016, Molecular biology of the cell.

[9]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[10]  Robert A. Smith,et al.  Next‐generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2 , 2016, Molecular genetics & genomic medicine.

[11]  K. Mikoshiba,et al.  Bidirectional Control of Synaptic GABAAR Clustering by Glutamate and Calcium , 2015, Cell reports.

[12]  Dorian C. Anderson,et al.  A network of autism linked genes stabilizes two pools of synaptic GABAA receptors , 2015, eLife.

[13]  S. Nelson,et al.  Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders , 2015, Neuron.

[14]  M. Zhen,et al.  MADD-4/Punctin and Neurexin Organize C. elegans GABAergic Postsynapses through Neuroligin , 2015, Neuron.

[15]  J. Bessereau,et al.  C. elegans Punctin Clusters GABAA Receptors via Neuroligin Binding and UNC-40/DCC Recruitment , 2015, Neuron.

[16]  A. M. van den Maagdenberg,et al.  Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans , 2015, Front. Cell. Neurosci..

[17]  A. M. van den Maagdenberg,et al.  Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice , 2014, Neurobiology of Disease.

[18]  Jason R. Climer,et al.  A Conserved Dopamine-Cholecystokinin Signaling Pathway Shapes Context–Dependent Caenorhabditis elegans Behavior , 2014, PLoS genetics.

[19]  C. Mainero,et al.  Migraine and Inhibitory System – I Can't Hold It! , 2014, Current Pain and Headache Reports.

[20]  C. A. Frank,et al.  How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity , 2014, Front. Cell. Neurosci..

[21]  Laura J. Grundy,et al.  A database of C. elegans behavioral phenotypes , 2013, Nature Methods.

[22]  Belinda Barbagallo,et al.  ACR-12 Ionotropic Acetylcholine Receptor Complexes Regulate Inhibitory Motor Neuron Activity in Caenorhabditis elegans , 2013, The Journal of Neuroscience.

[23]  W. Regehr,et al.  Presynaptic Calcium Influx Controls Neurotransmitter Release in Part by Regulating the Effective Size of the Readily Releasable Pool , 2013, The Journal of Neuroscience.

[24]  Dania Vecchia,et al.  Migraine: a disorder of brain excitatory–inhibitory balance? , 2012, Trends in Neurosciences.

[25]  Yishi Jin,et al.  TRPM Channels Modulate Epileptic-like Convulsions via Systemic Ion Homeostasis , 2011, Current Biology.

[26]  T. Südhof,et al.  RIM Determines Ca2+ Channel Density and Vesicle Docking at the Presynaptic Active Zone , 2011, Neuron.

[27]  M. Zhen,et al.  Action potentials drive body wall muscle contractions in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[28]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[29]  Jason R. Climer,et al.  A Dominant Mutation in a Neuronal Acetylcholine Receptor Subunit Leads to Motor Neuron Degeneration in Caenorhabditis elegans , 2010, The Journal of Neuroscience.

[30]  Lewis D. Griffin,et al.  NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the γ2 subunit , 2010, Proceedings of the National Academy of Sciences.

[31]  R. Tsien,et al.  Different Relationship of N- and P/Q-Type Ca2+ Channels to Channel-Interacting Slots in Controlling Neurotransmission at Cultured Hippocampal Synapses , 2010, The Journal of Neuroscience.

[32]  D. Pietrobon,et al.  CaV2.1 channelopathies , 2010, Pflügers Archiv - European Journal of Physiology.

[33]  D. Glanzman,et al.  Common Mechanisms of Synaptic Plasticity in Vertebrates and Invertebrates , 2010, Current Biology.

[34]  Rob C. G. van de Ven,et al.  High cortical spreading depression susceptibility and migraine‐associated symptoms in Cav2.1 S218L mice , 2010, Annals of neurology.

[35]  Erik M. Jorgensen,et al.  A Neuronal Acetylcholine Receptor Regulates the Balance of Muscle Excitation and Inhibition in Caenorhabditis elegans , 2009, PLoS biology.

[36]  Cori Bargmann,et al.  Presynaptic CaV2 calcium channel traffic requires CALF-1 and the alpha2-delta subunit UNC-36 , 2009, Nature Neuroscience.

[37]  K. Mikoshiba,et al.  Activity-Dependent Tuning of Inhibitory Neurotransmission Based on GABAAR Diffusion Dynamics , 2009, Neuron.

[38]  Mark J. Alkema,et al.  A Tyramine-Gated Chloride Channel Coordinates Distinct Motor Programs of a Caenorhabditis elegans Escape Response , 2009, Neuron.

[39]  M. Ferrari,et al.  Enhanced Excitatory Transmission at Cortical Synapses as the Basis for Facilitated Spreading Depression in CaV2.1 Knockin Migraine Mice , 2009, Neuron.

[40]  M. Nonet,et al.  Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density , 2008, Neuroscience Letters.

[41]  Daniel Choquet,et al.  New Concepts in Synaptic Biology Derived from Single-Molecule Imaging , 2008, Neuron.

[42]  K. Watschinger,et al.  A Destructive Interaction Mechanism Accounts for Dominant-Negative Effects of Misfolded Mutants of Voltage-Gated Calcium Channels , 2008, The Journal of Neuroscience.

[43]  C. Jeng,et al.  Dominant‐negative effects of episodic ataxia type 2 mutations involve disruption of membrane trafficking of human P/Q‐type Ca2+ channels , 2008, Journal of cellular physiology.

[44]  S. Eichler,et al.  E-I Balance and Human Diseases – from Molecules to Networking , 2008, Frontiers in molecular neuroscience.

[45]  S. Aurora,et al.  The Brain is Hyperexcitable in Migraine , 2007, Cephalalgia : an international journal of headache.

[46]  P. Lory,et al.  Voltage-gated calcium channels in genetic diseases. , 2006, Biochimica et biophysica acta.

[47]  R. Baloh,et al.  CACNA1A mutations causing episodic and progressive ataxia alter channel trafficking and kinetics , 2005, Neurology.

[48]  T. Fellin,et al.  Specific Kinetic Alterations of Human CaV2.1 Calcium Channels Produced by Mutation S218L Causing Familial Hemiplegic Migraine and Delayed Cerebral Edema and Coma after Minor Head Trauma* , 2005, Journal of Biological Chemistry.

[49]  A. M. van den Maagdenberg,et al.  Familial Hemiplegic Migraine Type 1 Mutations K1336E, W1684R, and V1696I Alter Cav2.1 Ca2+ Channel Gating , 2004, Journal of Biological Chemistry.

[50]  S. Priori,et al.  CaV1.2 Calcium Channel Dysfunction Causes a Multisystem Disorder Including Arrhythmia and Autism , 2004, Cell.

[51]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[52]  R. Tsien,et al.  Presynaptic Ca2+ Channels Compete for Channel Type-Preferring Slots in Altered Neurotransmission Arising from Ca2+ Channelopathy , 2004, Neuron.

[53]  Simon Kaja,et al.  A Cacna1a Knockin Migraine Mouse Model with Increased Susceptibility to Cortical Spreading Depression , 2004, Neuron.

[54]  J. Levin,et al.  sup-9, sup-10, and unc-93 May Encode Components of a Two-Pore K+ Channel that Coordinates Muscle Contraction in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[55]  D. Moerman,et al.  Critical Residues of the Caenorhabditis elegans unc-2 Voltage-Gated Calcium Channel That Affect Behavioral and Physiological Properties , 2003, The Journal of Neuroscience.

[56]  Jörg Striessnig,et al.  Neurological diseases: Neurobiology of migraine , 2003, Nature Reviews Neuroscience.

[57]  J. Bessereau,et al.  GABA Is Dispensable for the Formation of Junctional GABA Receptor Clusters in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[58]  G. Ahmadian,et al.  Interaction of Calcineurin and Type-A GABA Receptor γ2 Subunits Produces Long-Term Depression at CA1 Inhibitory Synapses , 2003, The Journal of Neuroscience.

[59]  Y. Ben-Ari,et al.  Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance , 2002, Trends in Neurosciences.

[60]  C. Fletcher,et al.  Familial hemiplegic migraine mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  I. Mori,et al.  Negative Regulation and Gain Control of Sensory Neurons by the C. elegans Calcineurin TAX-6 , 2002, Neuron.

[62]  Huda Y. Zoghbi,et al.  Increased Expression of α1A Ca2+Channel Currents Arising from Expanded Trinucleotide Repeats in Spinocerebellar Ataxia Type 6 , 2001, The Journal of Neuroscience.

[63]  E. Jorgensen,et al.  An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming , 2001, Nature.

[64]  W. Gish,et al.  Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map , 2001, Nature Genetics.

[65]  A. Fire,et al.  Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. , 2001, Gene.

[66]  P. Zipperlen,et al.  Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans , 2000, Genome Biology.

[67]  Eric R Kandel,et al.  Calcineurin-Mediated LTD of GABAergic Inhibition Underlies the Increased Excitability of CA1 Neurons Associated with LTP , 2000, Neuron.

[68]  E. Jorgensen,et al.  One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction , 1999, Nature Neuroscience.

[69]  K. Stauderman,et al.  Functional Consequences of Mutations in the Human α1A Calcium Channel Subunit Linked to Familial Hemiplegic Migraine , 1999, The Journal of Neuroscience.

[70]  E A Barnard,et al.  Caenorhabditis elegans Levamisole Resistance Geneslev-1, unc-29, and unc-38 Encode Functional Nicotinic Acetylcholine Receptor Subunits , 1997, The Journal of Neuroscience.

[71]  J A Crowell,et al.  A genetic selection for Caenorhabditis elegans synaptic transmission mutants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[72]  H. Horvitz,et al.  EGL-10 Regulates G Protein Signaling in the C. elegans Nervous System and Shares a Conserved Domain with Many Mammalian Proteins , 1996, Cell.

[73]  W. Schafer,et al.  A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans , 1995, Nature.

[74]  H. Horvitz,et al.  The GABAergic nervous system of Caenorhabditis elegans , 1993, Nature.

[75]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[76]  J. Lewis,et al.  Levamisole-resitant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors , 1980, Neuroscience.

[77]  F. Tamanini,et al.  Familial hemiplegic migraine. , 1955, Lancet.

[78]  Gregory A. Nelson,et al.  Functional Consequences of , 2013 .

[79]  G. Turrigiano Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. , 2012, Cold Spring Harbor perspectives in biology.

[80]  Andrew Charles,et al.  The neurobiology of migraine. , 2010, Handbook of clinical neurology.

[81]  T. Snutch,et al.  Calcium channelopathies: voltage-gated calcium channels. , 2007, Sub-cellular biochemistry.

[82]  F. Hofmann,et al.  Bursting pattern of hippocampal CAI pyramidal cells is modified by activity of the Ca(V)1.2 calcium channel , 2006 .

[83]  Patrick W. Hullett,et al.  BMC Genomics BioMed Central Methodology article Rapid single nucleotide polymorphism mapping in C. elegans , 2005 .

[84]  W. Catterall Structure and regulation of voltage-gated Ca2+ channels. , 2000, Annual review of cell and developmental biology.