Co-expression of IDO1 and PD-L1 in lung squamous cell carcinoma: Potential targets of novel combination therapy.

[1]  M. Smid,et al.  Epithelial-Mesenchymal Transition in Human Prostate Cancer Demonstrates Enhanced Immune Evasion Marked by IDO1 Expression. , 2018, Cancer research.

[2]  M. Socinski,et al.  IMpower131: Primary PFS and safety analysis of a randomized phase III study of atezolizumab + carboplatin + paclitaxel or nab-paclitaxel vs carboplatin + nab-paclitaxel as 1L therapy in advanced squamous NSCLC. , 2018, Journal of Clinical Oncology.

[3]  Federico Cappuzzo,et al.  Atezolizumab for First‐Line Treatment of Metastatic Nonsquamous NSCLC , 2018, The New England journal of medicine.

[4]  David C. Smith,et al.  Pembrolizumab (pembro) plus epacadostat or placebo for locally advanced or metastatic urothelial carcinoma (UC) after failure of first-line platinum-containing chemotherapy: KEYNOTE-698/ECHO-303. , 2018 .

[5]  Y. Shentu,et al.  Phase 3 study of carboplatin-paclitaxel/nab-paclitaxel (Chemo) with or without pembrolizumab (Pembro) for patients (Pts) with metastatic squamous (Sq) non-small cell lung cancer (NSCLC). , 2018 .

[6]  K. Harrington,et al.  A phase 3, randomized, open-label study of epacadostat plus pembrolizumab, pembrolizumab monotherapy, and the EXTREME regimen as first-line treatment for recurrent/metastatic head and neck squamous cell carcinoma (R/M SCCHN): ECHO-304/KEYNOTE-669. , 2018 .

[7]  I. Wistuba,et al.  Immunohistochemical and Image Analysis‐Based Study Shows That Several Immune Checkpoints are Co‐expressed in Non–Small Cell Lung Carcinoma Tumors , 2018, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[8]  A. Daud,et al.  Epacadostat plus nivolumab for advanced melanoma: Updated phase 2 results of the ECHO-204 study. , 2018 .

[9]  James R. Anderson,et al.  Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: Results of the phase 3 ECHO-301/KEYNOTE-252 study. , 2018 .

[10]  L. Paz-Ares,et al.  ECHO-305/KEYNOTE-654: A phase 3, randomized, double-blind study of first-line epacadostat plus pembrolizumab vs pembrolizumab plus placebo for metastatic non–small cell lung cancer (mNSCLC) with high PD-L1 levels. , 2018 .

[11]  M. Garassino,et al.  ECHO-306/KEYNOTE-715: A phase 3 study of first-line epacadostat plus pembrolizumab with or without platinum-based chemotherapy vs pembrolizumab plus platinum-based chemotherapy plus placebo for metastatic non–small cell lung cancer (mNSCLC). , 2018 .

[12]  R. Mehra,et al.  ECHO-310: A phase 3, randomized trial of epacadostat + nivolumab + chemo vs EXTREME as first-line treatment of recurrent/metastatic SCCHN. , 2018 .

[13]  Charles J. Vaske,et al.  Co-expression patterns of immune checkpoint molecules in relation to PD-L1 expression. , 2018 .

[14]  E. Plimack,et al.  Phase 3, randomized, double-blind trial of pembrolizumab plus epacadostat or placebo for cisplatin-ineligible urothelial carcinoma (UC): KEYNOTE-672/ECHO-307. , 2018 .

[15]  S. Novello,et al.  Pembrolizumab plus Chemotherapy in Metastatic Non–Small‐Cell Lung Cancer , 2018, The New England journal of medicine.

[16]  J. Szustakowski,et al.  Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden , 2018, The New England journal of medicine.

[17]  J. Taube,et al.  A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non–Small Cell Lung Cancer , 2017, JAMA oncology.

[18]  F. Hirsch,et al.  PD‐L1 Immunohistochemistry Assays for Lung Cancer: Results from Phase 1 of the Blueprint PD‐L1 IHC Assay Comparison Project , 2017, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[19]  Y. Maehara,et al.  The expression of PD-L1 protein as a prognostic factor in lung squamous cell carcinoma. , 2017, Lung cancer.

[20]  Carlos Barrios,et al.  Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial , 2017, The Lancet.

[21]  Alan Sharpe,et al.  Agreement between Programmed Cell Death Ligand-1 Diagnostic Assays across Multiple Protein Expression Cutoffs in Non–Small Cell Lung Cancer , 2017, Clinical Cancer Research.

[22]  M. Tiemann,et al.  Harmonized PD-L1 immunohistochemistry for pulmonary squamous-cell and adenocarcinomas , 2016, Modern Pathology.

[23]  A. Mansfield,et al.  Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer , 2016, Annals of oncology : official journal of the European Society for Medical Oncology.

[24]  R. Herbst,et al.  Differential Expression and Significance of PD-L1, IDO-1, and B7-H4 in Human Lung Cancer , 2016, Clinical Cancer Research.

[25]  Keunchil Park,et al.  Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial , 2016, The Lancet.

[26]  K. Azuma,et al.  Predictive relevance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy. , 2016, European journal of cancer.

[27]  J. Taube,et al.  Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer. , 2016, Cancer research.

[28]  F. Giles,et al.  Molecular Pathways: Targeting IDO1 and Other Tryptophan Dioxygenases for Cancer Immunotherapy , 2015, Clinical Cancer Research.

[29]  J. Renauld,et al.  Extensive Profiling of the Expression of the Indoleamine 2,3-Dioxygenase 1 Protein in Normal and Tumoral Human Tissues , 2014, Cancer Immunology Research.

[30]  A. von Deimling,et al.  Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR , 2014, Oncotarget.

[31]  H. Kajiyama,et al.  Inverse Correlation between Tumoral Indoleamine 2,3-Dioxygenase Expression and Tumor-Infiltrating Lymphocytes in Endometrial Cancer: Its Association with Disease Progression and Survival , 2008, Clinical Cancer Research.

[32]  L. Moretta,et al.  The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. , 2006, Blood.

[33]  U. Grohmann,et al.  The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells1 , 2006, The Journal of Immunology.

[34]  Stefan Schneeberger,et al.  Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. , 2006, Clinical cancer research : an official journal of the American Association for Cancer Research.

[35]  Y. Maehara,et al.  Combination Therapy of Radiotherapy and Anti‐PD‐1/PD‐L1 Treatment in Non–Small‐cell Lung Cancer: A Mini‐review , 2018, Clinical lung cancer.

[36]  H. Baba,et al.  IDO1 Expression Is Associated With Immune Tolerance and Poor Prognosis in Patients With Surgically Resected Esophageal Cancer , 2018 .