Responses Show Cell Type-Specific Differences in a Small Motor Circuit Neuropeptide Receptor Transcript Expression Levels and Magnitude of Ionic Current

[1]  W. Stein,et al.  Divergent co‐transmitter actions underlie motor pattern activation by a modulatory projection neuron , 2007, The European journal of neuroscience.

[2]  Timothy J. Fort,et al.  Regulation of the crab heartbeat by crustacean cardioactive peptide (CCAP): central and peripheral actions. , 2007, Journal of neurophysiology.

[3]  E. Marder,et al.  Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. , 2007, Annual review of physiology.

[4]  Eve Marder,et al.  Red pigment concentrating hormone strongly enhances the strength of the feedback to the pyloric rhythm oscillator but has little effect on pyloric rhythm period. , 2006, Journal of neurophysiology.

[5]  Eve Marder,et al.  Profiling of neuropeptides released at the stomatogastric ganglion of the crab, Cancer borealis with mass spectrometry , 2005, Journal of neurochemistry.

[6]  Farzan Nadim,et al.  Target-specific short-term dynamics are important for the function of synapses in an oscillatory neural network. , 2005, Journal of neurophysiology.

[7]  Farzan Nadim,et al.  Proprioceptor Regulation of Motor Circuit Activity by Presynaptic Inhibition of a Modulatory Projection Neuron , 2005, The Journal of Neuroscience.

[8]  E. Marder,et al.  Invertebrate Central Pattern Generation Moves along , 2005, Current Biology.

[9]  Eve Marder,et al.  Animal-to-Animal Variability in Motor Pattern Production in Adults and during Growth , 2005, The Journal of Neuroscience.

[10]  Kevin M. Crisp,et al.  A cephalic projection neuron involved in locomotion is dye coupled to the dopaminergic neural network in the medicinal leech , 2004, Journal of Experimental Biology.

[11]  Michael P Nusbaum,et al.  Different Sensory Systems Share Projection Neurons But Elicit Distinct Motor Patterns , 2004, The Journal of Neuroscience.

[12]  Jan-Marino Ramirez,et al.  Pacemaker neurons and neuronal networks: an integrative view , 2004, Current Opinion in Neurobiology.

[13]  K. Sillar,et al.  Metamodulation of a Spinal Locomotor Network by Nitric Oxide , 2004, The Journal of Neuroscience.

[14]  M. P. Nusbaum,et al.  Intercircuit Control via Rhythmic Regulation of Projection Neuron Activity , 2004, The Journal of Neuroscience.

[15]  M. P. Nusbaum,et al.  Mechanosensory Activation of a Motor Circuit by Coactivation of Two Projection Neurons , 2004, The Journal of Neuroscience.

[16]  Farzan Nadim,et al.  Dynamic Interaction of Oscillatory Neurons Coupled with Reciprocally Inhibitory Synapses Acts to Stabilize the Rhythm Period , 2004, The Journal of Neuroscience.

[17]  Eve Marder,et al.  The dynamic clamp comes of age , 2004, Trends in Neurosciences.

[18]  Scott L. Hooper,et al.  Phase Maintenance in the Pyloric Pattern of the Lobster (Panulirus interruptus) Stomatogastric Ganglion , 1997, Journal of Computational Neuroscience.

[19]  Scott L. Hooper,et al.  The Pyloric Pattern of the Lobster (Panulirus interruptus) Stomatogastric Ganglion Comprises Two Phase-Maintaining Subsets , 1997, Journal of Computational Neuroscience.

[20]  M. Moulins,et al.  Myogenic oscillatory activity in the pyloric rhythmic motor system of Crustacea , 1986, Journal of Comparative Physiology A.

[21]  M. P. Nusbaum,et al.  Long-lasting activation of rhythmic neuronal activity by a novel mechanosensory system in the crustacean stomatogastric nervous system. , 2004, Journal of neurophysiology.

[22]  Eve Marder,et al.  Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis , 2003, Journal of neurochemistry.

[23]  Farzan Nadim,et al.  Short-Term Dynamics of a Mixed Chemical and Electrical Synapse in a Rhythmic Network , 2003, The Journal of Neuroscience.

[24]  G. V. Di Prisco,et al.  The Pharmacology of Vertebrate Spinal Central Pattern Generators , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[25]  C. Canavier,et al.  Dynamics from a time series: can we extract the phase resetting curve from a time series? , 2003, Biophysical journal.

[26]  S. Hooper,et al.  Follower neurons in lobster (Panulirus interruptus) pyloric network regulate pacemaker period in complementary ways. , 2003, Journal of neurophysiology.

[27]  Eve Marder,et al.  The Functional Consequences of Changes in the Strength and Duration of Synaptic Inputs to Oscillatory Neurons , 2003, The Journal of Neuroscience.

[28]  D. H. Edwards,et al.  Metamodulation of the Crayfish Escape Circuit , 2003, Brain, Behavior and Evolution.

[29]  Karen A. Mesce,et al.  Metamodulation of the Biogenic Amines: Second-Order Modulation by Steroid Hormones and Amine Cocktails , 2003, Brain, Behavior and Evolution.

[30]  Stefan R. Pulver,et al.  Neuromodulatory complement of the pericardial organs in the embryonic lobster, homarus americanus , 2002, The Journal of comparative neurology.

[31]  Eve Marder,et al.  Cellular, synaptic and network effects of neuromodulation , 2002, Neural Networks.

[32]  M. P. Nusbaum,et al.  A small-systems approach to motor pattern generation , 2002, Nature.

[33]  Eve Marder,et al.  Colocalized Neuropeptides Activate a Central Pattern Generator by Acting on Different Circuit Targets , 2002, The Journal of Neuroscience.

[34]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[35]  Farzan Nadim,et al.  Synaptic Depression Mediates Bistability in Neuronal Networks with Recurrent Inhibitory Connectivity , 2001, The Journal of Neuroscience.

[36]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[37]  E. Kandel The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses , 2001, Science.

[38]  S Grillner,et al.  Gating and Braking of Short- and Long-Term Modulatory Effects by Interactions between Colocalized Neuromodulators , 2001, The Journal of Neuroscience.

[39]  A. Szücs,et al.  Extended dynamic clamp: controlling up to four neurons using a single desktop computer and interface , 2001, Journal of Neuroscience Methods.

[40]  P. Skiebe Neuropeptides are ubiquitous chemical mediators: Using the stomatogastric nervous system as a model system. , 2001, The Journal of experimental biology.

[41]  E Marder,et al.  Modulators with Convergent Cellular Actions Elicit Distinct Circuit Outputs , 2001, The Journal of Neuroscience.

[42]  P. S. Dickinson,et al.  RCPH modulation of a multi-oscillator network: effects on the pyloric network of the spiny lobster. , 2001, Journal of neurophysiology.

[43]  W. Stein,et al.  Projection Neurons with Shared Cotransmitters Elicit Different Motor Patterns from the Same Neural Circuit , 2000, The Journal of Neuroscience.

[44]  E Marder,et al.  Multiple Peptides Converge to Activate the Same Voltage-Dependent Current in a Central Pattern-Generating Circuit , 2000, The Journal of Neuroscience.

[45]  E Marder,et al.  GABA and responses to GABA in the stomatogastric ganglion of the crab Cancer borealis. , 2000, The Journal of experimental biology.

[46]  H. Dircksen,et al.  Ecdysis of decapod crustaceans is associated with a dramatic release of crustacean cardioactive peptide into the haemolymph. , 2000, The Journal of experimental biology.

[47]  D. H. Edwards,et al.  Metamodulation: the control and modulation of neuromodulation , 1999 .

[48]  A Ayali,et al.  Monoamine Control of the Pacemaker Kernel and Cycle Frequency in the Lobster Pyloric Network , 1999, The Journal of Neuroscience.

[49]  E Marder,et al.  Coordination of Fast and Slow Rhythmic Neuronal Circuits , 1999, The Journal of Neuroscience.

[50]  E. Marder,et al.  Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  E Marder,et al.  Different Proctolin Neurons Elicit Distinct Motor Patterns from a Multifunctional Neuronal Network , 1999, The Journal of Neuroscience.

[52]  E Marder,et al.  Sequential developmental acquisition of neuromodulatory inputs to a central pattern‐generating network , 1999, The Journal of comparative neurology.

[53]  S. Grillner,et al.  Activity-Dependent Metaplasticity of Inhibitory and Excitatory Synaptic Transmission in the Lamprey Spinal Cord Locomotor Network , 1999, The Journal of Neuroscience.

[54]  John W. Clark,et al.  Control of multistability in ring circuits of oscillators , 1999, Biological Cybernetics.

[55]  R. Harris-Warrick,et al.  Distributed Effects of Dopamine Modulation in the Crustacean Pyloric Network a , 1998, Annals of the New York Academy of Sciences.

[56]  Haruko Matsui,et al.  Inhibitory long-term potentiation underlies auditory conditioning of goldfish escape behaviour , 1998, Nature.

[57]  E Marder,et al.  Frequency Regulation of a Slow Rhythm by a Fast Periodic Input , 1998, The Journal of Neuroscience.

[58]  R. Harris-Warrick,et al.  Dopamine modulates graded and spike-evoked synaptic inhibition independently at single synapses in pyloric network of lobster. , 1998, Journal of neurophysiology.

[59]  C. Govind,et al.  Synaptic Structure and Transmitter Release in Crustacean Phasic and Tonic Motor Neurons , 1998, The Journal of Neuroscience.

[60]  M. McKERNAN,et al.  Fear conditioning induces a lasting potentiation of synaptic currents in vitro , 1997, Nature.

[61]  Joseph E LeDoux,et al.  Fear conditioning induces associative long-term potentiation in the amygdala , 1997, Nature.

[62]  B. Mulloney,et al.  Modulation of Force during Locomotion: Differential Action of Crustacean Cardioactive Peptide on Power-Stroke and Return- Stroke Motor Neurons , 1997, The Journal of Neuroscience.

[63]  E. Marder,et al.  Temporal Dynamics of Graded Synaptic Transmission in the Lobster Stomatogastric Ganglion , 1997, The Journal of Neuroscience.

[64]  M. P. Nusbaum,et al.  Motor Pattern Selection via Inhibition of Parallel Pathways , 1997, The Journal of Neuroscience.

[65]  M. P. Nusbaum,et al.  Intercircuit Control of Motor Pattern Modulation by Presynaptic Inhibition , 1997, The Journal of Neuroscience.

[66]  E Marder,et al.  Modulation of Oscillator Interactions in the Crab Stomatogastric Ganglion by Crustacean Cardioactive Peptide , 1997, The Journal of Neuroscience.

[67]  Eve Marder,et al.  Peptidergic Modulation of Synaptic Transmission in a Rhythmic Motor System , 1997 .

[68]  I. V. Orekhova,et al.  Functional Uncoupling of Linked Neurotransmitter Effects by Combinatorial Convergence , 1996, Science.

[69]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[70]  E. Marder,et al.  Matrix of neuromodulators in neurosecretory structures of the crab Cancer borealis. , 1995, The Journal of experimental biology.

[71]  Pierre Meyrand,et al.  A switch between two modes of synaptic transmission mediated by presynaptic inhibition , 1995, Nature.

[72]  M J Coleman,et al.  Functional consequences of compartmentalization of synaptic input , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  Brian J. Norris,et al.  Recruitment of a projection neuron determines gastric mill motor pattern selection in the stomatogastric nervous system of the crab, Cancer borealis. , 1994, Journal of neurophysiology.

[74]  Eve Marder,et al.  The dynamic clamp: artificial conductances in biological neurons , 1993, Trends in Neurosciences.

[75]  J. Hetling,et al.  The neuropeptide red pigment concentrating hormone affects rhythmic pattern generation at multiple sites. , 1993, Journal of neurophysiology.

[76]  E. Marder,et al.  The behavioral repertoire of the gastric mill in the crab, Cancer pagurus: an in situ endoscopic and electrophysiological examination , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  E. Marder,et al.  Dynamic clamp: computer-generated conductances in real neurons. , 1993, Journal of neurophysiology.

[78]  E Marder,et al.  Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+ , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  R. Harris-Warrick In: Dynamic Biological Networks: The Stomatogastric Nervous System , 1992 .

[80]  E. Marder,et al.  Neurons that form multiple pattern generators: identification and multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric system. , 1991, Journal of neurophysiology.

[81]  A. I. Selverston,et al.  A cholecystokinin-like hormone activates a feeding-related neural circuit in lobster , 1990, Nature.

[82]  E. Marder,et al.  Neuropeptide fusion of two motor-pattern generator circuits , 1990, Nature.

[83]  E. Marder,et al.  Peptidergic modulation of a multioscillator system in the lobster. I. Activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment-concentrating hormone. , 1989, Journal of neurophysiology.

[84]  E. Marder,et al.  A NEURONAL ROLE FOR A CRUSTACEAN RED PIGMENT CONCENTRATING HORMONE-LIKE PEPTIDE: NEUROMODULATION OF THE PYLORIC RHYTHM IN THE CRAB, CANCER BOREALIS , 1988 .

[85]  E Marder,et al.  Modulation of the lobster pyloric rhythm by the peptide proctolin , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  A. Selverston,et al.  The Crustacean Stomatogastric System , 1987, Springer Berlin Heidelberg.

[87]  E. Marder,et al.  Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons. , 1982, Journal of neurophysiology.

[88]  J. Miller,et al.  Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. , 1982, Journal of neurophysiology.

[89]  M. Siegler,et al.  Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle. , 1982, The Journal of physiology.

[90]  J. Miller,et al.  Rapid killing of single neurons by irradiation of intracellularly injected dye. , 1979, Science.

[91]  K. Graubard,et al.  Synaptic transmission without action potentials: input-output properties of a nonspiking presynaptic neuron. , 1978, Journal of neurophysiology.

[92]  H. Pinsker Aplysia bursting neurons as endogenous oscillators. I. Phase-response curves for pulsed inhibitory synaptic input. , 1977, Journal of neurophysiology.

[93]  D. Maynard,et al.  The structure of the stomatogastric neuromuscular system in Callinectes sapidus, Homarus americanus and Panulirus argus (Decapoda Crustacea). , 1974, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.