Hybrid simulation of autoregulation within transcription and translation

[1]  D. Higham,et al.  Zero, one and two-switch models of gene regulation , 2010 .

[2]  Tobias Jahnke,et al.  An Adaptive Wavelet Method for the Chemical Master Equation , 2009, SIAM J. Sci. Comput..

[3]  LUKASZ SZPRUCH,et al.  Comparing Hitting Time Behavior of Markov Jump Processes and Their Diffusion Approximations , 2010, Multiscale Model. Simul..

[4]  G. Yin,et al.  Hybrid Switching Diffusions: Properties and Applications , 2009 .

[5]  Desmond J. Higham,et al.  Switching and Diffusion Models for Gene Regulation Networks , 2009, Multiscale Model. Simul..

[6]  Stefan Engblom Spectral approximation of solutions to the chemical master equation , 2009 .

[7]  Peter Deuflhard,et al.  Adaptive Discrete Galerkin Methods Applied to the Chemical Master Equation , 2008, SIAM J. Sci. Comput..

[8]  Roger B. Sidje,et al.  Multiscale Modeling of Chemical Kinetics via the Master Equation , 2008, Multiscale Model. Simul..

[9]  Desmond J. Higham,et al.  Chemical Master Equation and Langevin regimes for a gene transcription model , 2007, Theor. Comput. Sci..

[10]  Andreas Hellander,et al.  Hybrid method for the chemical master equation , 2007, J. Comput. Phys..

[11]  Pawel Paszek,et al.  Modeling Stochasticity in Gene Regulation: Characterization in the Terms of the Underlying Distribution Function , 2007, Bulletin of mathematical biology.

[12]  D. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[13]  Marek Kimmel,et al.  Stochastic regulation in early immune response. , 2006, Biophysical journal.

[14]  Marek Kimmel,et al.  Transcriptional stochasticity in gene expression. , 2006, Journal of theoretical biology.

[15]  T. Kurtz,et al.  Submitted to the Annals of Applied Probability ASYMPTOTIC ANALYSIS OF MULTISCALE APPROXIMATIONS TO REACTION NETWORKS , 2022 .

[16]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[17]  H. Othmer,et al.  A stochastic analysis of first-order reaction networks , 2005, Bulletin of mathematical biology.

[18]  Johan Paulsson,et al.  Models of stochastic gene expression , 2005 .

[19]  C Jayaprakash,et al.  The role of dimerization in noise reduction of simple genetic networks. , 2003, Journal of theoretical biology.

[20]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  T. Kepler,et al.  Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.

[22]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Gillespie The chemical Langevin equation , 2000 .

[24]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[25]  D. Aldous Review: Stewart N. Ethier and Thomas G. Kurtz, Markov processes: Characterization and convergence , 1987 .

[26]  T. Kurtz Approximation of Population Processes , 1987 .

[27]  T. Kurtz Strong approximation theorems for density dependent Markov chains , 1978 .

[28]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[29]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .