On Quantum Optimal Transport

[1]  Alexander Muller-Hermes On the monotonicity of a quantum optimal transport cost , 2022, 2211.11713.

[2]  K. Życzkowski,et al.  Monotonicity of a quantum 2-Wasserstein distance , 2022, Journal of Physics A: Mathematical and Theoretical.

[3]  S. Friedland,et al.  Quantum Monge-Kantorovich Problem and Transport Distance between Density Matrices. , 2021, Physical review letters.

[4]  S. Lloyd,et al.  Learning quantum data with the quantum earth mover’s distance , 2021, Quantum Science and Technology.

[5]  Rocco Duvenhage Quadratic Wasserstein metrics for von Neumann algebras via transport plans , 2020, 2012.03564.

[6]  Seth Lloyd,et al.  The Quantum Wasserstein Distance of Order 1 , 2020, IEEE Transactions on Information Theory.

[7]  S. Friedland Tensor optimal transport, distance between sets of measures and tensor scaling , 2020, ArXiv.

[8]  G. De Palma,et al.  Quantum Optimal Transport with Quantum Channels , 2019, Annales Henri Poincaré.

[9]  Shouvanik Chakrabarti,et al.  Quantum Wasserstein Generative Adversarial Networks , 2019, NeurIPS.

[10]  Emanuele Caglioti,et al.  Quantum Optimal Transport is Cheaper , 2019, ArXiv.

[11]  Jing Liu,et al.  Quantum Fisher information matrix and multiparameter estimation , 2019, Journal of Physics A: Mathematical and Theoretical.

[12]  Kazuki Ikeda Foundation of quantum optimal transport and applications , 2019, Quantum Information Processing.

[13]  S. Friedland,et al.  Quantum Strassen’s theorem , 2019, 1905.06865.

[14]  S. Gaubert,et al.  Matrix versions of the Hellinger distance , 2019, Letters in Mathematical Physics.

[15]  E. Carlen,et al.  Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems , 2018, Journal of statistical physics.

[16]  Daniel Klein,et al.  The properties of partial trace and block trace operators of partitioned matrices , 2018 .

[17]  Seth Lloyd,et al.  Quantum Generative Adversarial Learning. , 2018, Physical review letters.

[18]  Mingsheng Ying,et al.  Quantum earth mover’s distance, a no-go quantum Kantorovich–Rubinstein theorem, and quantum marginal problem , 2018, Journal of Mathematics and Physics.

[19]  Gero Friesecke,et al.  Breaking the Curse of Dimension in Multi-Marginal Kantorovich Optimal Transport on Finite State Spaces , 2017, SIAM J. Math. Anal..

[20]  Krysta Marie Svore,et al.  Quantum Speed-Ups for Solving Semidefinite Programs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[21]  N. Datta,et al.  Relating Relative Entropy, Optimal Transport and Fisher Information: A Quantum HWI Inequality , 2017, Annales Henri Poincaré.

[22]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[23]  Thierry Paul,et al.  WAVE PACKETS AND THE QUADRATIC MONGE-KANTOROVICH DISTANCE IN QUANTUM MECHANICS , 2017, 1707.04161.

[24]  Jason Altschuler,et al.  Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration , 2017, NIPS.

[25]  Jérémie Bigot,et al.  Geodesic PCA in the Wasserstein space by Convex PCA , 2017 .

[26]  W. Gangbo,et al.  On the matrix Monge–Kantorovich problem , 2017, European Journal of Applied Mathematics.

[27]  F. Fagnola,et al.  On quantum versions of the classical Wasserstein distance , 2017 .

[28]  S. Lloyd,et al.  Quantum machine learning , 2016, Nature.

[29]  Nicolas Courty,et al.  Wasserstein discriminant analysis , 2016, Machine Learning.

[30]  Victor M. Panaretos,et al.  Amplitude and phase variation of point processes , 2016, 1603.08691.

[31]  Zoubin Ghahramani,et al.  Statistical Model Criticism using Kernel Two Sample Tests , 2015, NIPS.

[32]  Tommi S. Jaakkola,et al.  Principal Differences Analysis: Interpretable Characterization of Differences between Distributions , 2015, NIPS.

[33]  Shmuel Friedland,et al.  Matrices: Algebra, Analysis And Applications , 2015 .

[34]  Andreas J. Winter,et al.  Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints , 2015, ArXiv.

[35]  Gabriel Peyré,et al.  Convolutional wasserstein distances , 2015, ACM Trans. Graph..

[36]  T. Paul,et al.  On the Mean Field and Classical Limits of Quantum Mechanics , 2015, Communications in Mathematical Physics.

[37]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[38]  Wolfgang Heidrich,et al.  Displacement interpolation using Lagrangian mass transport , 2011, ACM Trans. Graph..

[39]  C. Villani Optimal Transport: Old and New , 2008 .

[40]  Jaroslaw Adam Miszczak,et al.  Sub- and super-fidelity as bounds for quantum fidelity , 2008, Quantum Inf. Comput..

[41]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[42]  M. Keyl Fundamentals of quantum information theory , 2002, quant-ph/0202122.

[43]  Wojciech Słomczyński,et al.  The Monge metric on the sphere and geometry of quantum states , 2000, quant-ph/0008016.

[44]  D. Voiculescu,et al.  A free probability analogue of the Wasserstein metric on the trace-state space , 2000, math/0006044.

[45]  Wojciech Słomczyński,et al.  The Monge distance between quantum states , 1997, quant-ph/9711011.

[46]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[47]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[48]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[49]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[50]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[51]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[52]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[53]  L. V. Kantorovich,et al.  Mathematical Methods of Organizing and Planning Production , 1960 .

[54]  J. Schwinger THE GEOMETRY OF QUANTUM STATES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[55]  F. L. Hitchcock The Distribution of a Product from Several Sources to Numerous Localities , 1941 .

[56]  Maria L. Rizzo,et al.  TESTING FOR EQUAL DISTRIBUTIONS IN HIGH DIMENSION , 2004 .

[57]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.