Discrete Uncertainty Principles and Sparse Signal Processing

We develop new discrete uncertainty principles in terms of numerical sparsity, which is a continuous proxy for the 0-norm. Unlike traditional sparsity, the continuity of numerical sparsity naturally accommodates functions which are nearly sparse. After studying these principles and the functions that achieve exact or near equality in them, we identify certain consequences in a number of sparse signal processing applications.

[1]  Anru Zhang,et al.  Sharp RIP bound for sparse signal and low-rank matrix recovery , 2013 .

[2]  Scott T. Rickard,et al.  Comparing Measures of Sparsity , 2008, IEEE Transactions on Information Theory.

[3]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[4]  P. Erd6s ON A CLASSICAL PROBLEM OF PROBABILITY THEORY b , 2001 .

[5]  Holger Rauhut,et al.  Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.

[6]  Piotr Indyk,et al.  Sample-Optimal Fourier Sampling in Any Constant Dimension , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[7]  Joel A. Tropp The sparsity gap: Uncertainty principles proportional to dimension , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[8]  Miles E. Lopes Estimating Unknown Sparsity in Compressed Sensing , 2013 .

[9]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[10]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[11]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[12]  Christoph Studer,et al.  Recovery of Signals with Low Density , 2015, ArXiv.

[13]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[14]  M. Talagrand Selecting a proportion of characters , 1998 .

[15]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[16]  Joel A. Tropp,et al.  Sharp Recovery Bounds for Convex Demixing, with Applications , 2012, Found. Comput. Math..

[17]  Mary Wootters,et al.  New constructions of RIP matrices with fast multiplication and fewer rows , 2012, SODA.

[18]  Laurent Demanet,et al.  Recovering the Sparsest Element in a Subspace , 2013, 1310.1654.

[19]  Volkan Cevher,et al.  Convexity in Source Separation : Models, geometry, and algorithms , 2013, IEEE Signal Processing Magazine.

[20]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[21]  A. Berthier,et al.  On support properties of Lp-functions and their Fourier transforms , 1977 .

[22]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[23]  T. Tao An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.

[24]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[25]  R. Gribonval,et al.  Highly sparse representations from dictionaries are unique and independent of the sparseness measure , 2007 .

[26]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[27]  J. Tropp On the conditioning of random subdictionaries , 2008 .

[28]  Jared Tanner,et al.  Explorer Compressed Sensing : How Sharp Is the Restricted Isometry Property ? , 2011 .

[29]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[30]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[31]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[32]  P. Stevenhagen,et al.  Chebotarëv and his density theorem , 1996 .

[33]  F. Santosa,et al.  Linear inversion of ban limit reflection seismograms , 1986 .

[34]  Dustin G. Mixon,et al.  Robust width: A characterization of uniformly stable and robust compressed sensing , 2014, Applied and Numerical Harmonic Analysis.

[35]  J. Bourgain An Improved Estimate in the Restricted Isometry Problem , 2014 .

[36]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[37]  W. Beckner Inequalities in Fourier analysis , 1975 .

[38]  V. Temlyakov,et al.  A remark on Compressed Sensing , 2007 .

[39]  Noga Alon,et al.  Problems and results in extremal combinatorics--I , 2003, Discret. Math..

[40]  Jean-Christophe Pesquet,et al.  Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed ${\ell _1}/{\ell _2}$ Regularization , 2014, IEEE Signal Processing Letters.

[41]  G. Hardy A Theorem Concerning Fourier Transforms , 1933 .

[42]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[43]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Tropp On the Linear Independence of Spikes and Sines , 2007, 0709.0517.

[45]  S. Mendelson,et al.  Majorizing measures and proportional subsets of bounded orthonormal systems , 2008, 0801.3556.

[46]  Dustin G. Mixon,et al.  Derandomizing Restricted Isometries via the Legendre Symbol , 2014, ArXiv.

[47]  Dustin G. Mixon,et al.  The Road to Deterministic Matrices with the Restricted Isometry Property , 2012, Journal of Fourier Analysis and Applications.

[48]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.