Achieving the designed error capacity in decoding algebraic-geometric codes
暂无分享,去创建一个
[1] Serge G. Vladut,et al. On the decoding of algebraic-geometric codes over Fq for q>=16 , 1990, IEEE Trans. Inf. Theory.
[2] Jacobus H. van Lint,et al. Generalized Reed - Solomon codes from algebraic geometry , 1987, IEEE Trans. Inf. Theory.
[3] Ruud Pellikaan,et al. Decoding geometric Goppa codes using an extra place , 1992, IEEE Trans. Inf. Theory.
[4] V. D. Goppa. Codes on Algebraic Curves , 1981 .
[5] Ruud Pellikaan,et al. On a decoding algorithm for codes on maximal curves , 1989, IEEE Trans. Inf. Theory.
[6] T. R. N. Rao,et al. Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.
[7] M. Tsfasman,et al. Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .
[8] Tom Høholdt,et al. On the number of correctable errors for some AG-codes , 1993, IEEE Trans. Inf. Theory.
[9] A.N. Skorobogatov,et al. On the decoding of algebraic-geometric codes , 1990, IEEE Trans. Inf. Theory.
[10] Tom Høholdt,et al. Construction and decoding of a class of algebraic geometry codes , 1989, IEEE Trans. Inf. Theory.
[11] Henning Stichtenoth,et al. A note on Hermitian codes over GF(q2) , 1988, IEEE Trans. Inf. Theory.
[12] S. G. Vladut,et al. Algebraic-Geometric Codes , 1991 .