Convergence analysis of a deterministic discrete time system of feng's MCA learning algorithm

The convergence of minor-component analysis (MCA) algorithms is an important issue with bearing on the use of these methods in practical applications. This correspondence studies the convergence of Feng's MCA learning algorithm via a corresponding deterministic discrete-time (DDT) system. Some sufficient convergence conditions are obtained for Feng's MCA learning algorithm with constant learning rate. Simulations are carried out to illustrate the theory

[1]  Zheng Bao,et al.  Dynamical system for computing the eigenvectors associated with the largest eigenvalue of a positive definite matrix , 1995, IEEE Trans. Neural Networks.

[2]  Kurt Hornik,et al.  Convergence analysis of local feature extraction algorithms , 1992, Neural Networks.

[3]  T. J. Abatzoglou Frequency superresolution performance of the constrained total least squares method , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[4]  Andrzej Cichocki,et al.  Adaptive learning algorithm for principal component analysis with partial data , 1996 .

[5]  J. Griffiths Adaptive array processing. A tutorial , 1983 .

[6]  Zhang Yi,et al.  Erratum: Dynamical stability conditions for Lotka-Volterra recurrent neural networks with delays [Phys. Rev. E 66 , 011910 (2002)] , 2002 .

[7]  Qingfu Zhang,et al.  On the discrete-time dynamics of a PCA learning algorithm , 2003, Neurocomputing.

[8]  Tamer Basar,et al.  Analysis of Recursive Stochastic Algorithms , 2001 .

[9]  Qingfu Zhang,et al.  A class of learning algorithms for principal component analysis and minor component analysis , 2000, IEEE Trans. Neural Networks Learn. Syst..

[10]  Carlos E. Davila,et al.  An efficient recursive total least squares algorithm for FIR adaptive filtering , 1994, IEEE Trans. Signal Process..

[11]  Zhang Yi,et al.  Multistability Analysis for Recurrent Neural Networks with Unsaturating Piecewise Linear Transfer Functions , 2003, Neural Computation.

[12]  Ricardo H. C. Takahashi,et al.  A new constrained ellipsoidal algorithm for nonlinear optimization with equality constraints , 2003 .

[13]  John B. Moore,et al.  Global analysis of Oja's flow for neural networks , 1994, IEEE Trans. Neural Networks.

[14]  Wei-Yong Yan,et al.  Global convergence of Oja's subspace algorithm for principal component extraction , 1998, IEEE Trans. Neural Networks.

[15]  M. Swamy,et al.  A constrained anti-Hebbian learning algorithm for total least-squares estimation with applications to adaptive FIR and IIR filtering , 1994 .

[16]  George Mathew,et al.  Orthogonal eigensubspace estimation using neural networks , 1994, IEEE Trans. Signal Process..

[17]  Sabine Van Huffel,et al.  The MCA EXIN neuron for the minor component analysis , 2002, IEEE Trans. Neural Networks.

[18]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[19]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[20]  Richard Klemm,et al.  Adaptive airborne MTI: an auxiliary channel approach , 1987 .

[21]  Ricardo C. L. F. Oliveira,et al.  H∞ Guaranteed Cost Computation by Means of Parameter Dependent Lyapunov Functions , 2003 .

[22]  Sergio Barbarossa,et al.  Comparison of optimum and linear prediction techniques for clutter cancellation , 1987 .

[23]  Zheng Bao,et al.  Robust recursive least squares learning algorithm for principal component analysis , 2000, IEEE Trans. Neural Networks Learn. Syst..

[24]  K. Tan,et al.  Dynamic stability conditions for Lotka-Volterra recurrent neural networks with delays. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[26]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[27]  S.Y. Kung,et al.  Adaptive Principal component EXtraction (APEX) and applications , 1994, IEEE Trans. Signal Process..

[28]  Erkki Oja,et al.  Modified Hebbian learning for curve and surface fitting , 1992, Neural Networks.

[29]  Kai-Bor Yu,et al.  Total least squares approach for frequency estimation using linear prediction , 1987, IEEE Trans. Acoust. Speech Signal Process..

[30]  Qingfu Zhang,et al.  Energy function for the one-unit Oja algorithm , 1995, IEEE Trans. Neural Networks.

[31]  Pedro J. Zufiria,et al.  On the discrete-time dynamics of the basic Hebbian neural network node , 2002, IEEE Trans. Neural Networks.

[32]  Kurt Hornik,et al.  Local PCA algorithms , 2000, IEEE Trans. Neural Networks Learn. Syst..

[33]  Fa-Long Luo,et al.  A Minor Component Analysis Algorithm , 1997, Neural Networks.

[34]  Mahmood R. Azimi-Sadjadi,et al.  Principal component extraction using recursive least squares learning , 1995, IEEE Trans. Neural Networks.

[35]  Giansalvo Cirrincione,et al.  Against the convergence of the minor component analysis neurons , 1999, IEEE Trans. Neural Networks.

[36]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[37]  K. Wada,et al.  On-line modified least-squares parameter estimation of linear discrete dynamic systems , 1977 .

[38]  E. Oja,et al.  On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix , 1985 .

[39]  Zhang Yi,et al.  Multistability of discrete-time recurrent neural networks with unsaturating piecewise linear activation functions , 2004, IEEE Transactions on Neural Networks.

[40]  M. Swamy,et al.  Learning algorithm for total least-squares adaptive signal processing , 1992 .

[41]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[42]  Zhang Yi,et al.  Convergence analysis of a deterministic discrete time system of Oja's PCA learning algorithm , 2005, IEEE Transactions on Neural Networks.

[43]  Wei Xing Zheng,et al.  A fast recursive total least squares algorithm for adaptive IIR filtering , 2004, IEEE Transactions on Signal Processing.

[44]  Vwani P. Roychowdhury,et al.  Algorithms for accelerated convergence of adaptive PCA , 2000, IEEE Trans. Neural Networks Learn. Syst..

[45]  Hazem M. Abbas,et al.  Neural model for Karhunen?Loe?ve trans-form with application to adaptive image compression , 1993, INFOCOM 1994.

[46]  Zheng Bao,et al.  Total least mean squares algorithm , 1998, IEEE Trans. Signal Process..