LUCID: Accelerating Image Reconstructions of LEO Satellites Using GPUs

We report on a new Multi-Frame Blind Deconvolution (MFBD) implementation developed to reconstruct high resolution images of Low Earth Orbit (LEO) satellites from short-exposure ensembles of images recorded from a large-diameter ground-based telescope. This implementation, which is named Likelihood-based Uncertainty-Constrained Iterative Deconvolution (LUCID), uses NVidia's Compute-Unified Device Architecture (CUDA) to perform iterative blind deconvolution processing on Graphical Processing Units (GPUs). A single instance of LUCID is capable of using multiple GPUs to segment and process a large collection of image frames in parallel, achieving significant reductions in processing time and hardware cost compared to equivalent algorithms that only use Central Processing Units (CPUs). In this paper we describe how LUCID makes use of CUDA and GPU hardware to produce image reconstructions. We also show performance comparisons between the gold-standard Physically Constrained Iterative Deconvolution (PCID) implementation of MFBD running on all of the cores of an enterprise-class CPU and LUCID running on various target GPU platforms, including consumer-grade and datacenter-grade devices. The quality of image reconstructions produced by LUCID is demonstrated by showing data collected with the 3.6-meter Advanced Electro-Optical System (AEOS) telescope before and after processing.

[1]  Stuart Jefferies,et al.  Multiframe blind deconvolution for imaging in daylight and strong turbulence conditions , 2011, Optical Engineering + Applications.

[2]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[3]  Brandoch Calef,et al.  Recent improvements in advanced automated post-processing at the AMOS observatories , 2015, 2015 IEEE Aerospace Conference.

[4]  Robert K. Tyson,et al.  Field Guide to Adaptive Optics, Second Edition , 2012 .

[5]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[6]  Paul Rigge,et al.  Performance of FORTRAN and C GPU Extensions for a Benchmark Suite of Fourier Pseudospectral Algorithms , 2012, 2012 Symposium on Application Accelerators in High Performance Computing.

[7]  Michael Roggemann,et al.  Improving optical imaging of dim SSA targets with simplified adaptive optics systems , 2018, 2018 IEEE Aerospace Conference.

[8]  D. Fried Probability of getting a lucky short-exposure image through turbulence* , 1978 .

[9]  Stuart M. Jefferies,et al.  Physically constrained iterative deconvolution of adaptive optics images , 1998, Remote Sensing.

[10]  Brandoch Calef,et al.  Iteratively reweighted blind deconvolution , 2013, 2013 IEEE International Conference on Image Processing.

[11]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[12]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[13]  James R. Stone,et al.  Comparison of maximum-likelihood image and wavefront reconstruction using conventional image, phase diversity, and lenslet diversity data , 2006, SPIE Optics + Photonics.

[14]  Eran O. Ofek,et al.  How to COAAD Images. I. Optimal Source Detection and Photometry of Point Sources Using Ensembles of Images , 2015, 1512.06872.

[15]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[16]  Xiao-Qing Jin,et al.  Conjugate Gradient Method , 2016 .

[17]  Charles L. Matson,et al.  PCID and ASPIRE 2.0 - The Next Generation of AMOS Image Processing Software , 2007 .

[18]  Daniel Thompson Performance Comparison of Optimization Methods for Blind Deconvolution , 2016 .

[19]  Clive G. Page,et al.  Definition of the Flexible Image Transport System (FITS), version 3.0 , 2010 .

[20]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[21]  Martin Kraus,et al.  GPU-Accelerated Time-of-Flight Super-Resolution for Image-Guided Surgery , 2013, Bildverarbeitung für die Medizin.

[22]  Stuart Jefferies,et al.  Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects. , 2009, Applied optics.

[23]  Jeremy Bailey,et al.  An investigation of lucky imaging techniques , 2009, 0906.3041.

[24]  Jason Sanders,et al.  CUDA by example: an introduction to general purpose GPU programming , 2010 .

[25]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[26]  Bernhard Schölkopf,et al.  Online Multi-frame Blind Deconvolution with Super-resolution and Saturation Correction , 2011 .

[27]  C. Matson,et al.  Biased Cramér-Rao lower bound calculations for inequality-constrained estimators. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  J. Christou,et al.  Restoration of Astronomical Images by Iterative Blind Deconvolution , 1993 .

[29]  Xu Liu,et al.  Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect , 2019, IEEE Transactions on Parallel and Distributed Systems.

[30]  Peter Steinbach,et al.  gearshifft - The FFT Benchmark Suite for Heterogeneous Platforms , 2017, ISC.

[31]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[32]  Cambridge,et al.  Lucky imaging: High angular resolution imaging in the visible from the ground , 2005, astro-ph/0507299.

[33]  Stacie Williams,et al.  A new performance metric for hybrid adaptive optics systems , 2014, 2014 IEEE Aerospace Conference.

[34]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[35]  Pedro Negrete-Regagnon,et al.  Practical aspects of image recovery by means of the bispectrum , 1996 .

[36]  L. Noethe,et al.  Active Optics, Adaptive Optics, and Laser Guide Stars , 1993, Science.

[37]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[38]  John E. Stone,et al.  OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems , 2010, Computing in Science & Engineering.