Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes

Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately 1.75 Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270°, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time.

[1]  James H. Shirley,et al.  Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols , 2010 .

[2]  M. Lemmon,et al.  Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder , 1999 .

[3]  A. Toigo,et al.  Mars Orbiter Camera climatology of textured dust storms , 2015 .

[4]  J. Bell,et al.  Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results , 2015 .

[5]  Andrew Steele,et al.  Mars methane detection and variability at Gale crater , 2015, Science.

[6]  R. V. Morris,et al.  Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: Implications for fumarolic activity and secondary phosphate phases in sulfate‐rich Paso Robles soil at Gusev Crater, Mars , 2013 .

[7]  Robert Spurr,et al.  Simultaneous derivation of intensities and weighting functions in a general pseudo-spherical discrete ordinate radiative transfer treatment , 2002 .

[8]  Mark T. Lemmon,et al.  Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission , 2014 .

[9]  M. Richardson,et al.  The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011) , 2015 .

[10]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[11]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[12]  N. Thomas,et al.  Effect of diffuse sky brightness on the spectrophotometry of rough Martian surfaces , 2000 .

[13]  Amitabha Ghosh,et al.  First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES , 2004, Science.

[14]  M. Lemmon,et al.  Convective vortices and dust devils at the MSL landing site: Annual variability , 2016 .

[15]  Michael D. Smith THEMIS Observations of Mars Aerosol Optical Depth from 2002-2008 , 2009 .

[16]  F. Forget,et al.  Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations , 2002 .

[17]  Mark T. Lemmon,et al.  A full martian year of line-of-sight extinction within Gale Crater, Mars as acquired by the MSL Navcam through sol 900 , 2016 .

[18]  Nicolas Thomas,et al.  The color of the Martian sky and its influence on the illumination of the Martian surface , 1999 .

[19]  Robert M. Haberle,et al.  Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model , 2006 .

[20]  Richard W. Zurek,et al.  The martian dust cycle. , 1992 .

[21]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity , 2006 .

[22]  Mark T. Lemmon,et al.  Pressure observations by the Curiosity rover: Initial results , 2014 .

[23]  Michael D. Smith Spacecraft Observations of the Martian Atmosphere , 2008 .

[24]  Scott D. Guzewich,et al.  The vertical distribution of Martian aerosol particle size , 2014 .

[25]  Mark T. Lemmon,et al.  The first Martian year of cloud activity from Mars Science Laboratory (sol 0-800) , 2016 .

[26]  K. Stamnes,et al.  Radiative Transfer in the Atmosphere and Ocean , 1999 .

[27]  Amitabha Ghosh,et al.  One Martian year of atmospheric observations using MER Mini‐TES , 2006 .

[28]  P. Gierasch,et al.  The Effect of Dust on the Temperature of the Martian Atmosphere , 1972 .

[29]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[30]  M. Lemmon,et al.  Eight-year climatology of dust optical depth on Mars , 2014, 1409.4841.

[31]  J. Schofield,et al.  Interannual similarity in the Martian atmosphere during the dust storm season , 2016 .

[32]  Bruce A. Cantor,et al.  Ultraviolet dust aerosol properties as observed by MARCI , 2010 .

[33]  Javier Gómez-Elvira,et al.  The meteorology of Gale Crater as determined from Rover Environmental Monitoring Station observations and numerical modeling. Part II: Interpretation , 2016 .

[34]  J. Bandfield,et al.  Separation of Atmospheric and Surface Spectral Features in Mars Global Surveyor Thermal Emission Spectrometer (Tes) Spectra , 2013 .

[35]  A. McEwen,et al.  Transient liquid water and water activity at Gale crater on Mars , 2015 .

[36]  James F. Bell,et al.  Mars Exploration Rover Navigation Camera in‐flight calibration , 2008 .

[37]  E. Sebastián,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .

[38]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[39]  Scott D. Guzewich,et al.  Atmospheric tides in Gale Crater, Mars , 2016 .

[40]  S. Jiménez,et al.  Retrieval of ultraviolet spectral irradiance from filtered photodiode measurements , 2009 .

[41]  M. Wolff,et al.  Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model , 2011 .

[42]  Germán David Mendoza Martínez,et al.  Likely frost events at Gale crater: Analysis from MSL/REMS measurements , 2016 .

[43]  R. Haberle,et al.  Investigations of the variability of dust particle sizes in the martian atmosphere using the NASA Ames General Circulation Model , 2008 .

[44]  J. Murphy,et al.  Mars' surface pressure tides and their behavior during global dust storms , 1998 .

[45]  C. Córdoba-Jabonero,et al.  Influence of aerosol multiple scattering of ultraviolet radiation on martian atmospheric sensing , 2007 .

[46]  R. Zurek,et al.  Thermal tides in the dusty martian atmosphere: a verification of theory. , 1981, Science.

[47]  S. Murchie,et al.  Vertical distribution of dust and water ice aerosols from CRISM limb‐geometry observations , 2013 .

[48]  F. Daerden,et al.  Mars Water-Ice Clouds and Precipitation , 2009, Science.

[49]  A. Knoll,et al.  Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: Crater hopping at Meridiani Planum , 2015 .

[50]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[51]  J. Bell,et al.  Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission , 2014, 1403.4234.

[52]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[53]  M. J. Wolff,et al.  An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere , 2000 .

[54]  Raymond E. Arvidson,et al.  Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .

[55]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .