Rate constant and transmission coefficient in the diffusion theory of reaction rates
暂无分享,去创建一个
[1] M. Mangel. Small Fluctuations in Systems with Multiple Steady States , 1979 .
[2] Bernard J. Matkowsky,et al. The Exit Problem: A New Approach to Diffusion Across Potential Barriers , 1979 .
[3] J. H. Weiner,et al. A generalization of Kramers’ rate formula to include some anharmonic effects , 1978 .
[4] N. Kampen,et al. A soluble model for diffusion in a bistable potential , 1977 .
[5] C. Blomberg. The Brownian motion theory of chemical transition rates , 1977 .
[6] P. Visscher. Escape rate for a Brownian particle in a potential Well , 1976 .
[7] Diffusion frequency factors in some simple examples of transition-state rate theory. , 1976, Proceedings of the National Academy of Sciences of the United States of America.
[8] P. Gennes. Brownian motion of a classical particle through potential barriers. Application to the helix-coil transitions of heteropolymers , 1975 .
[9] Frank W. J. Olver,et al. Introduction to Asymptotics and Special Functions , 1974 .
[10] R. Khas'minskii,et al. On Equations of Brownian Motion , 1964 .
[11] G. F. Miller,et al. The Evaluation of Eigenvalues of a Differential Equation Arising in a Problem in Genetics , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] G. Klein,et al. Mean first-passage times of Brownian motion and related problems , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[13] W. Feller. An Introduction to Probability Theory and Its Applications , 1959 .
[14] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[15] J. Hirschfelder,et al. The Transmission Coefficient in the Theory of Absolute Reaction Rates , 1943 .
[16] S. Chandrasekhar. Stochastic problems in Physics and Astronomy , 1943 .
[17] H. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .