Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics
暂无分享,去创建一个
J. Dellith | M. Schmidt | L. Wondraczek | C. Dubs | Guojun Gao | A. Winterstein-Beckmann | O. Surzhenko
[1] M. Peng,et al. Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation , 2014 .
[2] L. Wondraczek,et al. Spectral asymmetry and deep red photoluminescence in Eu 3+ -activated Na 3 YSi 3 O 9 glass ceramics , 2014 .
[3] L. Wondraczek,et al. Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield , 2014 .
[4] Zhi-Jun Zhang,et al. Luminescent properties of Tb3 +-activated B2O3–GeO2–Gd2O3 scintillating glasses , 2013 .
[5] Y. Sugahara,et al. UV-Visible Faraday Rotators Based on Rare-Earth Fluoride Single Crystals: LiREF4 (RE=Tb, Dy, Ho, Er and Yb), PrF3 and CeF3 , 2013 .
[6] Katsuhisa Tanaka,et al. Magnetic and magneto-optical quenching in (Mn 2+ , Sr 2+ ) metaphosphate glasses , 2013 .
[7] Shengming Zhou,et al. Fabrication and Performance Optimization of the Magneto-Optical (Tb1-xRx)3Al5O12(R=Y, Ce) Transparent Ceramics , 2012 .
[8] Jianrong Qiu,et al. An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser , 2012 .
[9] Chien-Hao Huang,et al. Photoluminescence investigations on a novel green-emitting phosphor Ba3Sc(BO3)3:Tb3+ using synchrotron vacuum ultraviolet radiation , 2012 .
[10] M. Peng,et al. Temperature dependence and quantum efficiency of ultrabroad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics. , 2012, Optics letters.
[11] M. Peng,et al. Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics , 2012 .
[12] Edgar Dutra Zanotto,et al. Critical Analysis of Glass Stability Parameters and Application to Lithium Borate Glasses , 2011 .
[13] M. Lezhnina,et al. Efficient green emission from transparent Tb3+–silicone hybrid materials , 2011 .
[14] M. Schmidt,et al. Complex Faraday Rotation in Microstructured Magneto‐optical Fiber Waveguides , 2011, Advanced materials.
[15] M. Peng,et al. Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics. , 2011, Optics express.
[16] N. Spaldin. Magnetic Materials : Fundamentals and Applications , 2010 .
[17] V. Sigaev,et al. Borogermanate glasses with a high terbium oxide content , 2010 .
[18] P. Dorenbos,et al. Luminescence dynamics in Tb(3+)-doped CaWO(4) and CaMoO(4) crystals. , 2010, Inorganic chemistry.
[19] Lili Hu,et al. Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2–ZnO–Bi2O3 glasses , 2009 .
[20] Guonian Wang,et al. Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass , 2009 .
[21] Katsuhisa Tanaka,et al. Magneto-optical properties of transparent divalent iron phosphate glasses , 2008 .
[22] Lili Han,et al. UV Luminescence Property of YPO4:RE (RE = Ce3+, Tb3+) , 2008 .
[23] Yen-Hwei Chang,et al. Luminescence and Energy Transfer Properties of Gd3+and Tb3+in LaAlGe2O7 , 2007 .
[24] Katsuhisa Tanaka,et al. Preparation and Faraday Effect of Fluoroaluminate Glasses Containing Divalent Europium Ions , 2005 .
[25] Masayuki Nogami,et al. Faraday Rotation Effect of Highly Tb2O3/Dy2O3-Concentrated B2O3−Ga2O3−SiO2−P2O5 Glasses , 2002 .
[26] Masayuki Yamane,et al. Glasses for Photonics , 2000 .
[27] R. Uecker,et al. On the Crystallization of Terbium Aluminium Garnet , 1999, 0801.3317.
[28] A. Potemkin,et al. Comparative characteristics of magneto-optical materials. , 1997, Applied optics.
[29] Jianrong Qiu,et al. Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses , 1997 .
[30] Y. Won,et al. Faraday rotation of Hoya FR5 glass at cryogenic temperature , 1996 .
[31] Katsuhisa Tanaka,et al. Large Verdet constant of 30Tb2O3.70B2O3 glass , 1995 .
[32] S. Yuan,et al. A new Faraday rotation glass with a large Verdet constant , 1994 .
[33] T. Zarubina,et al. Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region , 1991 .
[34] M. Matecki,et al. Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates , 1989 .
[35] G. E. Thomas,et al. Luminescence and absorption of Tb3+in mo·Al2O3·B2O3·Tb2O3 glasses , 1987 .
[36] J A Davis,et al. Temperature dependence of the Faraday rotation of Hoya FR-5 glass. , 1984, Applied optics.
[37] A. Villaverde,et al. Magnetooptical dispersion of Hoya glasses: AOT-5, AOT-44B, and FR-5. , 1982, Applied optics.
[38] A. Hrubý. Evaluation of glass-forming tendency by means of DTA , 1972 .
[39] K. Rajnak,et al. Electronic Energy Levels of the Trivalent Lanthanide Aquo Ions. III. Tb3 , 1968 .
[40] Robert A. Satten,et al. Spectra and energy levels of rare earth ions in crystals , 1968 .
[41] J. Suits,et al. Preparation and Faraday Rotation of Divalent Europium Glasses , 1966 .
[42] C. B. Rubinstein,et al. Magneto‐Optical Properties of Rare Earth (III) Aluminum Garnets , 1964 .
[43] S. B. Berger,et al. Faraday Rotation of Rare-Earth (III) Phosphate Glasses , 1964 .
[44] Homer E. KlSSlNGER. Reaction Kinetics in Differential Thermal Analysis , 1957 .
[45] G. F. Morgan. Luminescent Materials , 1941, Nature.