Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics

[1]  M. Peng,et al.  Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation , 2014 .

[2]  L. Wondraczek,et al.  Spectral asymmetry and deep red photoluminescence in Eu 3+ -activated Na 3 YSi 3 O 9 glass ceramics , 2014 .

[3]  L. Wondraczek,et al.  Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield , 2014 .

[4]  Zhi-Jun Zhang,et al.  Luminescent properties of Tb3 +-activated B2O3–GeO2–Gd2O3 scintillating glasses , 2013 .

[5]  Y. Sugahara,et al.  UV-Visible Faraday Rotators Based on Rare-Earth Fluoride Single Crystals: LiREF4 (RE=Tb, Dy, Ho, Er and Yb), PrF3 and CeF3 , 2013 .

[6]  Katsuhisa Tanaka,et al.  Magnetic and magneto-optical quenching in (Mn 2+ , Sr 2+ ) metaphosphate glasses , 2013 .

[7]  Shengming Zhou,et al.  Fabrication and Performance Optimization of the Magneto-Optical (Tb1-xRx)3Al5O12(R=Y, Ce) Transparent Ceramics , 2012 .

[8]  Jianrong Qiu,et al.  An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser , 2012 .

[9]  Chien-Hao Huang,et al.  Photoluminescence investigations on a novel green-emitting phosphor Ba3Sc(BO3)3:Tb3+ using synchrotron vacuum ultraviolet radiation , 2012 .

[10]  M. Peng,et al.  Temperature dependence and quantum efficiency of ultrabroad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics. , 2012, Optics letters.

[11]  M. Peng,et al.  Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics , 2012 .

[12]  Edgar Dutra Zanotto,et al.  Critical Analysis of Glass Stability Parameters and Application to Lithium Borate Glasses , 2011 .

[13]  M. Lezhnina,et al.  Efficient green emission from transparent Tb3+–silicone hybrid materials , 2011 .

[14]  M. Schmidt,et al.  Complex Faraday Rotation in Microstructured Magneto‐optical Fiber Waveguides , 2011, Advanced materials.

[15]  M. Peng,et al.  Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics. , 2011, Optics express.

[16]  N. Spaldin Magnetic Materials : Fundamentals and Applications , 2010 .

[17]  V. Sigaev,et al.  Borogermanate glasses with a high terbium oxide content , 2010 .

[18]  P. Dorenbos,et al.  Luminescence dynamics in Tb(3+)-doped CaWO(4) and CaMoO(4) crystals. , 2010, Inorganic chemistry.

[19]  Lili Hu,et al.  Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2–ZnO–Bi2O3 glasses , 2009 .

[20]  Guonian Wang,et al.  Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass , 2009 .

[21]  Katsuhisa Tanaka,et al.  Magneto-optical properties of transparent divalent iron phosphate glasses , 2008 .

[22]  Lili Han,et al.  UV Luminescence Property of YPO4:RE (RE = Ce3+, Tb3+) , 2008 .

[23]  Yen-Hwei Chang,et al.  Luminescence and Energy Transfer Properties of Gd3+and Tb3+in LaAlGe2O7 , 2007 .

[24]  Katsuhisa Tanaka,et al.  Preparation and Faraday Effect of Fluoroaluminate Glasses Containing Divalent Europium Ions , 2005 .

[25]  Masayuki Nogami,et al.  Faraday Rotation Effect of Highly Tb2O3/Dy2O3-Concentrated B2O3−Ga2O3−SiO2−P2O5 Glasses , 2002 .

[26]  Masayuki Yamane,et al.  Glasses for Photonics , 2000 .

[27]  R. Uecker,et al.  On the Crystallization of Terbium Aluminium Garnet , 1999, 0801.3317.

[28]  A. Potemkin,et al.  Comparative characteristics of magneto-optical materials. , 1997, Applied optics.

[29]  Jianrong Qiu,et al.  Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses , 1997 .

[30]  Y. Won,et al.  Faraday rotation of Hoya FR5 glass at cryogenic temperature , 1996 .

[31]  Katsuhisa Tanaka,et al.  Large Verdet constant of 30Tb2O3.70B2O3 glass , 1995 .

[32]  S. Yuan,et al.  A new Faraday rotation glass with a large Verdet constant , 1994 .

[33]  T. Zarubina,et al.  Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region , 1991 .

[34]  M. Matecki,et al.  Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates , 1989 .

[35]  G. E. Thomas,et al.  Luminescence and absorption of Tb3+in mo·Al2O3·B2O3·Tb2O3 glasses , 1987 .

[36]  J A Davis,et al.  Temperature dependence of the Faraday rotation of Hoya FR-5 glass. , 1984, Applied optics.

[37]  A. Villaverde,et al.  Magnetooptical dispersion of Hoya glasses: AOT-5, AOT-44B, and FR-5. , 1982, Applied optics.

[38]  A. Hrubý Evaluation of glass-forming tendency by means of DTA , 1972 .

[39]  K. Rajnak,et al.  Electronic Energy Levels of the Trivalent Lanthanide Aquo Ions. III. Tb3 , 1968 .

[40]  Robert A. Satten,et al.  Spectra and energy levels of rare earth ions in crystals , 1968 .

[41]  J. Suits,et al.  Preparation and Faraday Rotation of Divalent Europium Glasses , 1966 .

[42]  C. B. Rubinstein,et al.  Magneto‐Optical Properties of Rare Earth (III) Aluminum Garnets , 1964 .

[43]  S. B. Berger,et al.  Faraday Rotation of Rare-Earth (III) Phosphate Glasses , 1964 .

[44]  Homer E. KlSSlNGER Reaction Kinetics in Differential Thermal Analysis , 1957 .

[45]  G. F. Morgan Luminescent Materials , 1941, Nature.