Approximate results for rainbow labelings

A simple graph $$G=(V,\,E)$$G=(V,E) is said to be antimagic if there exists a bijection $$f{\text {:}}\,E\rightarrow [1,\,|E|]$$f:E→[1,|E|] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection $$f{\text {:}}\,V\rightarrow [1,\, |V|],$$f:V→[1,|V|], such that $$\forall x,\,y\in V,$$∀x,y∈V,$$\begin{aligned} \sum _{x_i\in N(x)}f\left( x_i\right) \ne \sum _{x_j\in N(y)}f\left( x_j\right) . \end{aligned}$$∑xi∈N(x)fxi≠∑xj∈N(y)fxj.Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval $$[1,\,2n+m-4]$$[1,2n+m-4] and, for trees with k inner vertices, in the interval $$[1,\,m+k].$$[1,m+k]. In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree $$\Delta $$Δ in the interval $$[1,\,n+t(n-t)],$$[1,n+t(n-t)], where $$ t=\min \{\Delta ,\,\lfloor n/2\rfloor \},$$t=min{Δ,⌊n/2⌋}, and, for trees with k leaves, in the interval $$[1,\, 3n-4k].$$[1,3n-4k]. In particular, all trees with $$n=2k$$n=2k vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam.

[1]  Yongxi Cheng Lattice grids and prisms are antimagic , 2007, Theor. Comput. Sci..

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  W. Wallis,et al.  Magic Graphs , 2001 .

[4]  Mirka Miller,et al.  On a Relationship between Completely Separating Systems and Antimagic Labeling of Regular Graphs , 2010, IWOCA.

[5]  Anna S. Lladó,et al.  Every tree is a large subtree of a tree that decomposes Kn or Kn, n , 2010, Discret. Math..

[6]  F. V. Petrov,et al.  Partitions of nonzero elements of a finite field into pairs , 2010, 1005.1177.

[7]  Tao-Ming Wang,et al.  On anti-magic labeling for graph products , 2008, Discret. Math..

[8]  Yuchen Zhang,et al.  The antimagicness of the Cartesian product of graphs , 2009, Theor. Comput. Sci..

[9]  Béla Bollobás,et al.  Integer sets with prescribed pairwise differences being distinct , 2005, Eur. J. Comb..

[10]  Yongxi Cheng A new class of antimagic Cartesian product graphs , 2008, Discret. Math..

[11]  Mirka Miller,et al.  On Antimagic Labeling for Generalized Web and Flower Graphs , 2010, IWOCA.

[12]  S. M. Hegde,et al.  On magic graphs , 2003, Australas. J Comb..

[13]  P. D. Chawathe,et al.  Antimagic Labeling of Complete m -ary Trees , 2002 .

[14]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[15]  Mirka Miller,et al.  Distance magic labelings of graphs , 2003, Australas. J Comb..

[16]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[17]  M. Bača,et al.  Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions , 2008 .

[18]  Yehuda Roditty,et al.  On zero-sum partitions and anti-magic trees , 2009, Discret. Math..

[19]  Daniel W. Cranston,et al.  Regular bipartite graphs are antimagic , 2009, J. Graph Theory.

[20]  Tao-Ming Wang Toroidal Grids Are Anti-magic , 2005, COCOON.

[21]  G. Ringel,et al.  PEARLS in GRAPH THEORY , 2007 .

[22]  Dan Hefetz,et al.  Anti‐magic graphs via the Combinatorial NullStellenSatz , 2005, J. Graph Theory.

[23]  Noga Alon,et al.  Dense graphs are antimagic , 2003, J. Graph Theory.

[24]  Noga Alon Additive latin transversals , 2000 .