The Balloon-borne Large Aperture Submillimeter Telescope Observatory
暂无分享,去创建一个
Mark J. Devlin | Peter A. R. Ade | Steven Li | Giampaolo Pisano | Jason E. Austermann | Gabriele Coppi | Simon Dicker | Nicholas Galitzki | Johannes Hubmayr | Federico Nati | Mario Zannoni | Ian Lowe | Peter C. Ashton | James Beall | Susan Clark | Erin G. Cox | Bradley J. Dober | Valentina Fanfani | Laura M. Fissel | Jiangsong Gao | Brandon Hensley | Zhi-yun Li | Nathan P. Lourie | Peter G. Martin | Philip Mauskopf | Giles Novak | Javier L. Romualdez | Adrian Sinclair | Juan D. Soler | Carole Tucker | Michael Vissers | Jordan Wheeler | Paul A. Williams | Steven X. Li | P. Ade | P. Mauskopf | J. Austermann | C. Tucker | Zhi-Yun Li | F. Nati | G. Pisano | M. Zannoni | M. Devlin | S. Dicker | J. Beall | L. Fissel | J. Hubmayr | J. Soler | B. Hensley | S. Clark | M. Vissers | J. Wheeler | P. Ashton | G. Coppi | B. Dober | N. Galitzki | A. Sinclair | G. Novak | N. Lourie | E. Cox | V. Fanfani | J. Romualdez | P. Martin | Jiangsong Gao | P. Williams | I. Lowe | Valentina Fanfani
[1] Brandon Hensley,et al. Studying Magnetic Fields in Star Formation and the Turbulent Interstellar Medium , 2019 .
[2] Enzo Pascale,et al. BALLOON-BORNE SUBMILLIMETER POLARIMETRY OF THE VELA C MOLECULAR CLOUD: SYSTEMATIC DEPENDENCE OF POLARIZATION FRACTION ON COLUMN DENSITY AND LOCAL POLARIZATION-ANGLE DISPERSION , 2015, 1509.05298.
[3] G. Wright,et al. Spectropolarimetry of the 3.4 μm Feature in the Diffuse ISM toward the Galactic Center Quintuplet Cluster , 2006, astro-ph/0607245.
[4] Enzo Pascale,et al. Relative Alignment between the Magnetic Field and Molecular Gas Structure in the Vela C Giant Molecular Cloud Using Low- and High-density Tracers , 2018, The Astrophysical Journal.
[5] Enrico Fermi,et al. Magnetic fields in spiral arms , 1953 .
[6] G. Hilton,et al. Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond , 2018, Journal of Low Temperature Physics.
[7] A. E. Wright,et al. THEORY OF STAR FORMATION. , 1970 .
[8] R. B. Barreiro,et al. Planck 2018 results , 2018, Astronomy & Astrophysics.
[9] V. Guillet,et al. Dust models compatible with Planck intensity and polarization data in translucent lines of sight , 2017, 1710.04598.
[10] Mark J. Devlin,et al. Design and characterization of a balloon-borne diffraction-limited submillimeter telescope platform for BLAST-TNG , 2018, Astronomical Telescopes + Instrumentation.
[11] Johannes Hubmayr,et al. The design and characterization of wideband spline-profiled feedhorns for Advanced ACTPol , 2016, Astronomical Telescopes + Instrumentation.
[12] Paul Clark,et al. Robust diffraction-limited near-infrared-to-near-ultraviolet wide-field imaging from stratospheric balloon-borne platforms-Super-pressure Balloon-borne Imaging Telescope performance. , 2020, The Review of scientific instruments.
[13] A. Lazarian,et al. A UNIFIED MODEL OF GRAIN ALIGNMENT: RADIATIVE ALIGNMENT OF INTERSTELLAR GRAINS WITH MAGNETIC INCLUSIONS , 2016, 1605.02828.
[14] E. Falgarone,et al. Turbulence in the interstellar medium , 2014, 1404.3691.
[15] Gabriele Coppi,et al. Preflight Detector Characterization of BLAST-TNG , 2020 .
[16] Christoph Federrath,et al. The Star Formation Rate of Molecular Clouds , 2013, 1312.5365.
[17] C. B. Netterfield,et al. The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry-BLASTPol: performance and results from the 2012 Antarctic flight , 2014, Astronomical Telescopes and Instrumentation.
[18] C. B. Netterfield,et al. AN IMPRINT OF MOLECULAR CLOUD MAGNETIZATION IN THE MORPHOLOGY OF THE DUST POLARIZED EMISSION , 2013, 1303.1830.
[19] D. O. Astronomy,et al. Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.
[20] L. Davis,et al. The Strength of Interstellar Magnetic Fields , 1951 .
[21] Juan D. Soler,et al. What are we learning from the relative orientation between density structures and the magnetic field in molecular clouds , 2017, 1705.00477.
[22] Itziar Aretxaga,et al. Over half of the far-infrared background light comes from galaxies at z ≥ 1.2 , 2009, Nature.
[23] C. Federrath,et al. The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function , 2019, Front. Astron. Space Sci..
[24] Mark R. Krumholz,et al. The big problems in star formation: The star formation rate, stellar clustering, and the initial mass function , 2014, 1402.0867.
[25] G. C. Hilton,et al. Superconducting micro-resonator arrays with ideal frequency spacing and extremely low frequency collision rate , 2017, 1711.07914.
[26] Roberto Gilmozzi,et al. Ground-based and Airborne Telescopes VII , 2008 .
[27] David T. Chuss,et al. Astro2020 Science White Paper Determining the Composition of Interstellar Dust with Far-Infrared Polarimetry , 2019 .
[28] Raphael Flauger,et al. Dust-Polarization Maps for Local Interstellar Turbulence. , 2017, Physical review letters.
[29] Chang-Goo Kim,et al. Dust Polarization Maps from TIGRESS: E/B Power Asymmetry and TE Correlation , 2019, The Astrophysical Journal.
[30] G. Kowal,et al. DENSITY STUDIES OF MHD INTERSTELLAR TURBULENCE: STATISTICAL MOMENTS, CORRELATIONS AND BISPECTRUM , 2008, 0811.0822.
[31] Blakesley Burkhart,et al. The Star Formation Rate in the Gravoturbulent Interstellar Medium , 2018, The Astrophysical Journal.
[32] Simon Dicker,et al. An Open Source, FPGA-Based LeKID Readout for BLAST-TNG: Pre-Flight Results , 2016, 1611.05400.
[33] Mark J. Devlin,et al. Preflight characterization of the BLAST-TNG receiver and detector arrays , 2018, Astronomical Telescopes + Instrumentation.