Problems and perspectives of borehole disposal of radioactive waste

[1]  V. Malkovsky,et al.  The Thermal Field around a Borehole Repository of Radioactive Waste , 2021, Doklady Earth Sciences.

[2]  S. Finsterle,et al.  Sealing of a Deep Horizontal Borehole Repository for Nuclear Waste , 2020, Energies.

[3]  H. Mattsson,et al.  Numerical Modelling of Clay Seal Maturation in Deep Boreholes with Nuclear Waste , 2020 .

[4]  S. Finsterle,et al.  Post-Closure Safety Calculations for the Disposal of Spent Nuclear Fuel in a Generic Horizontal Drillhole Repository , 2020, Energies.

[5]  A. Macfarlane,et al.  Siting Deep Boreholes for Disposal of Radioactive Waste: Consequences for Tight Coupling between Natural and Engineered Systems. , 2020, Environmental science & technology.

[6]  Guido Bracke,et al.  Status of Deep Borehole Disposal of High-Level Radioactive Waste in Germany , 2019, Energies.

[7]  Neil A. Chapman,et al.  Who Might Be Interested in a Deep Borehole Disposal Facility for Their Radioactive Waste? , 2019, Energies.

[8]  Stefan Finsterle,et al.  Corrosion Performance of Engineered Barrier System in Deep Horizontal Drillholes , 2019, Energies.

[9]  J. Rector,et al.  Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes , 2019, Energies.

[10]  Stefan Finsterle,et al.  Thermal Evolution near Heat-Generating Nuclear Waste Canisters Disposed in Horizontal Drillholes , 2019, Energies.

[11]  V. Malkovsky,et al.  Influence of Na-Al-Fe-P glass alteration in hot non-saturated vapor on leaching of vitrified radioactive wastes in water , 2018, Journal of Nuclear Materials.

[12]  L. A. Bol'shov,et al.  A new approach to radioactive waste self-burial using high penetrating radiation , 2018 .

[13]  Frank Charlier,et al.  About the Possibility of Disposal of HLRW in Deep Boreholes in Germany , 2017 .

[14]  A. Hedin,et al.  Crystalline Rock as a Repository for Swedish Spent Nuclear Fuel , 2016 .

[15]  N. Hyatt,et al.  The initial dissolution rates of simulated UK Magnox–ThORP blend nuclear waste glass as a function of pH, temperature and waste loading , 2015, Mineralogical Magazine.

[16]  Fergus G. F. Gibb,et al.  Deep borehole disposal of nuclear waste: engineering challenges , 2014 .

[17]  N. Diomidis,et al.  Materials Options and Corrosion-Related Considerations in the Design of Spent Fuel and High-Level Waste Disposal Canisters for a Deep Geological Repository in Opalinus Clay , 2014 .

[18]  M. I. Ojovan,et al.  Acoustic emission on melting/solidification of natural granite simulating very deep waste disposal , 2012 .

[19]  A. S. Polyakov,et al.  Physical modelling of the thermal load on a near-surface repository of highly active waste-material sources of ionizing radiation , 1990 .

[20]  A. E. Ringwood,et al.  Disposal of high-level nuclear wastes: a geological perspective , 1985, Mineralogical Magazine.

[21]  William E Lee,et al.  Thermal footprint of a geological disposal facility containing EURO-GANEX wasteforms , 2020 .

[22]  M. I. Ojovan,et al.  Radioactive waste management and contaminated site clean-up : processes, technologies and international experience , 2013 .

[23]  Joonhong Ahn,et al.  Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste , 2010 .

[24]  William E. Lee,et al.  An Introduction to Nuclear Waste Immobilisation , 2005 .

[25]  G. D. Sizgek Thermal Considerations in a Very Deep Borehole Nuclear Waste Repository for Synroc , 2000 .

[26]  M. I. Ojovan,et al.  Disposal of Spent Sealed Radiation Sources in Borehole Repositories , 1997 .