Theory of the weakly interacting Bose gas

This article reviews recent advances in the theory of the three-dimensional dilute homogeneous Bose gas at zero and finite temperature. Effective-field-theory methods are used to formulate a systematic perturbative framework that can be used to calculate the properties of a system at $T=0.$ The perturbative expansion of these properties is essentially an expansion in the gas parameter $\sqrt{{\mathrm{na}}^{3}},$ where $a$ is the $s$-wave scattering length and $n$ is the number density. In particular, the leading quantum corrections to the ground-state energy density, the condensate depletion, and long-wavelength collective excitations are rederived in an efficient and economical manner. Nonuniversal effects are also discussed. These effects are higher-order corrections that depend on properties of the interatomic potential other than the scattering length, such as the effective range. The article critically examines various approaches to the dilute Bose gas in equilibrium at finite temperature. These include the Bogoliubov approximation, the Popov approximation, the Hartree-Fock-Bogoliubov approximation, the \ensuremath{\Phi}-derivable approach, optimized perturbation theory, and renormalization-group techniques. The article ends with a look at recent calculations of the critical temperature of the dilute Bose gas, which include $1/N$ techniques, lattice simulations, self-consistent calculations, and variational perturbation theory.

[1]  E. Braaten,et al.  Universality in the three-body problem for {sup 4}He atoms , 2002, cond-mat/0203421.

[2]  J. C. Ward,et al.  Ground-State Energy of a Many-Fermion System. II , 1960 .

[3]  W. Stwalley Stability of Spin-Aligned Hydrogen at Low Temperatures and High Magnetic Fields: New Field-Dependent Scattering Resonances and Predissociations , 1976 .

[4]  M. J. Davis,et al.  Microcanonical temperature for a classical field: Application to Bose-Einstein condensation , 2003, cond-mat/0307155.

[5]  Transition Temperature of a Uniform Imperfect Bose Gas , 1999, cond-mat/9904027.

[6]  H. Stanley,et al.  Approximate Renormalization Group Based on the Wegner-Houghton Differential Generator , 1974 .

[7]  H. Kleinert Strong-coupling behavior of phi4 theories and critical exponents , 1998 .

[8]  Cornish,et al.  Stable 85Rb bose-einstein condensates with widely tunable interactions , 2000, Physical review letters.

[9]  R. Arnowitt,et al.  THEORY OF MANY-BOSON SYSTEMS: PAIR THEORY , 1959 .

[10]  Low dimensional Bose gases , 2002, cond-mat/0202085.

[11]  Properties of Derivative Expansion Approximations to the Renormalization Group , 1996, hep-th/9610012.

[12]  Stevenson,et al.  Second-order corrections to the Gaussian effective potential of lambda phi4 theory. , 1990, Physical review. D, Particles and fields.

[13]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[14]  Petrov,et al.  Regimes of quantum degeneracy in trapped 1D gases , 2000, Physical review letters.

[15]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[16]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[17]  T. Morris On Truncations of the Exact Renormalization Group , 1994, hep-th/9405190.

[18]  V. Popov Functional integrals and collective excitations , 1987 .

[19]  Bose Plancks Gesetz und Lichtquantenhypothese , 1924 .

[20]  T. Toyoda A MICROSCOPIC THEORY OF THE LAMBDA TRANSITION. II , 1982 .

[21]  J. Cornwall,et al.  Effective Action for Composite Operators , 1974 .

[22]  Renormalization group approach to field theory at finite temperature. , 1995, Physical review. D, Particles and fields.

[23]  Optimized Perturbation Theory at Finite Temperature Two-Loop Analysis , 2000, hep-ph/0012322.

[24]  Howard Georgi,et al.  Effective Field Theory , 1993 .

[25]  H. Kleinert,et al.  Dependence of variational perturbation expansions on strong-coupling behavior: Inapplicability of d expansion to field theory , 2003, hep-th/0302116.

[26]  D. Litim,et al.  Perturbation theory and renormalization group equations , 2001, hep-th/0111191.

[27]  Renormalization group theory of the three-dimensional dilute Bose gas. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  Kerson Huang,et al.  Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction , 1957 .

[29]  Xuepeng Sun Monte Carlo studies of three-dimensional O1 and O4 phi4 theory related to Bose-Einstein condensation phase transition temperatures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Jean-Paul Blaizot,et al.  Quantum Theory of Finite Systems , 1985 .

[31]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[32]  G. Baym,et al.  Bose-Einstein transition in a dilute interacting gas , 2001, cond-mat/0107129.

[33]  A. Duncan,et al.  Nonperturbative physics from interpolating actions , 1988 .

[34]  P. Stevenson Optimized Perturbation Theory , 1981 .

[35]  Okopinska Nonstandard expansion techniques for the effective potential in lambda phi4 quantum field theory. , 1987, Physical review. D, Particles and fields.

[36]  S. Morgan A gapless theory of Bose-Einstein condensation in dilute gases at finite temperature , 1999, cond-mat/9911278.

[37]  N. M. Hugenholtz,et al.  Ground-State Energy and Excitation Spectrum of a System of Interacting Bosons , 1959 .

[38]  Critical Temperature of Bose-Einstein Condensation of Hard-Sphere Gases , 1997, cond-mat/9707028.

[39]  Gapless mean-field theory of Bose-Einstein condensates , 2000 .

[40]  Non-Analytic Vertex Renormalization of a Bose Gas at Finite Temperature , 2002, cond-mat/0204016.

[41]  G. Baym,et al.  Self-Consistent Approximations in Many-Body Systems , 1962 .

[42]  M. Gell-Mann,et al.  Correlation Energy of an Electron Gas at High Density , 1957 .

[43]  J. Goldstone,et al.  Field theories with « Superconductor » solutions , 1961 .

[44]  Herman Feshbach,et al.  A Unified Theory of Nuclear Reactions, II , 1962 .

[45]  H. Stoof,et al.  Variational approach to the dilute Bose gas , 1995, cond-mat/9507134.

[46]  F. Takano EXCITATION SPECTRUM IN MANY-BOSON SYSTEMS , 1961 .

[47]  A. Griffin,et al.  Finite-temperature excitations in a dilute Bose-condensed gas , 1998 .

[48]  Heinrich Leutwyler,et al.  Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark , 1985 .

[49]  Theoretical Study of the Damping of Collective Excitations in a Bose-Einstein Condensate , 1997, cond-mat/9708080.

[50]  P. Nozières,et al.  Structure of the perturbation expansion for the bose liquid at zero temperature , 1964 .

[51]  H. Stoof,et al.  Phase fluctuations in atomic Bose gases. , 2001, Physical review letters.

[53]  F. Laloë,et al.  Bose-Einstein condensation in interacting gases , 1998, cond-mat/9809356.

[54]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[55]  N. P. Landsman Limitations to dimensional reduction at high temperature , 1989 .

[56]  Kerson Huang,et al.  Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties , 1957 .

[57]  Heinrich Leutwyler,et al.  Chiral perturbation theory to one loop , 1984 .

[58]  Viktor Nikolayevich Popov Functional Integrals in Quantum Field Theory and Statistical Physics , 1983 .

[59]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[60]  T c for dilute Bose gases: Beyond leading order in 1 / N , 2000, cond-mat/0005197.

[61]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[62]  Tim R. Morris Derivative expansion of the exact renormalization group , 1994 .

[63]  Optimized perturbation theory at finite temperature , 1998, hep-ph/9803226.

[64]  R. J. Dodd,et al.  Gapless Finite- T Theory of Collective Modes of a Trapped Gas , 1998 .

[65]  Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures. , 1996, Physical review. B, Condensed matter.

[66]  Thermodynamics of a Weakly Interacting Bose–Einstein Gas , 1997, cond-mat/9706088.

[67]  K. Brueckner,et al.  Bose-Einstein Gas with Repulsive Interactions: General Theory , 1957 .

[69]  T. Wu Ground State of a Bose System of Hard Spheres , 1959 .

[70]  E. Lieb Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas , 1963 .

[71]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[72]  K. Sawada GROUND-STATE ENERGY OF BOSE-EINSTEIN GAS WITH REPULSIVE INTERACTION , 1959 .

[73]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[74]  P. C. Hohenberg,et al.  Microscopic Theory of Superfluid Helium , 1965 .

[75]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[76]  C. Gale,et al.  Finite-temperature field theory , 1989 .

[77]  T. D. Lee,et al.  LOW-TEMPERATURE BEHAVIOR OF A DILUTE BOSE SYSTEM OF HARD SPHERES. I. EQUILIBRIUM PROPERTIES , 1958 .

[78]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[79]  Nick P. Proukakis,et al.  Comparison of gapless mean field theories for trapped Bose-Einstein condensates , 1998 .

[80]  Effective Field Theory Approach to Bose-Einstein Condensation , 1997, cond-mat/9711250.

[81]  H. Kleinert Strong coupling phi**4 theory in four epsilon dimensions, and critical exponents , 1997 .

[82]  Verhaar,et al.  Threshold and resonance phenomena in ultracold ground-state collisions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[83]  Variational calculations of dispersion coefficients for interactions among H, He, and Li atoms. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[84]  T. D. Lee,et al.  Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics , 1957 .

[85]  Transition temperature for weakly interacting homogeneous Bose gases , 2000, cond-mat/0007151.

[86]  Monte Carlo simulation of O(2) phi(4) field theory in three dimensions. , 2001 .

[87]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[88]  Holzmann,et al.  Bose-einstein condensation in quasi-2D trapped gases , 2000, Physical review letters.

[89]  J. Vidal,et al.  Optimization of the derivative expansion in the nonperturbative renormalization group , 2003 .

[90]  H. Kleinert Seven-Loop Critical Exponents from Strong-Coupling phi^4-Theory in Three Dimensions , 1998, hep-th/9812197.

[91]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[92]  M. Strickland,et al.  Massive basketball diagram for a thermal scalar field theory , 2000 .

[93]  Henri Orland,et al.  Quantum Many-Particle Systems , 1988 .

[94]  H. Kleinert Addendum to “Strong-coupling behavior of φ 4 theories and critical exponents” , 1998 .