Asymmetric sequence divergence of duplicate genes.

Much like humans, gene duplicates may be created equal, but they do not stay that way for long. For four completely sequenced genomes we show that 20%-30% of duplicate gene pairs show asymmetric evolution in the amino acid sequence of their protein products. That is, one of the duplicates evolves much faster than the other. The greater this asymmetry, the greater the ratio Ka/Ks of amino acid substitutions (Ka) to silent substitutions (Ks) in a gene pair. This indicates that most asymmetric divergence may be caused by relaxed selective constraints on one of the duplicates. However, we also find some candidate duplicates where positive (directional) selection of beneficial mutations (Ka/Ks > 1) may play a role in asymmetric divergence. Our analysis rests on a codon-based model of molecular evolution that allows a test for asymmetric divergence in Ka. The method is also more sensitive in detecting positive selection (Ka/Ks > 1) than models relying only on pairwise gene comparisons.

[1]  J. McEwan,et al.  Testing the neutral theory of molecular evolution using genomic data: a comparison of the human and bovine transcriptome , 2006, Genetics Selection Evolution.

[2]  Matthew W. Hahn,et al.  Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? , 2004, Journal of Molecular Evolution.

[3]  Mark Johnston,et al.  Yeast genome duplication was followed by asynchronous differentiation of duplicated genes , 2003, Nature.

[4]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[5]  Ronald W. Davis,et al.  Role of duplicate genes in genetic robustness against null mutations , 2003, Nature.

[6]  Cori Bargmann,et al.  Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli , 2002, Nature.

[7]  Andreas Wagner,et al.  Asymmetric functional divergence of duplicate genes in yeast. , 2002, Molecular biology and evolution.

[8]  A. J. Schroeder,et al.  The FlyBase database of the Drosophila Genome Projects and community literature. , 2002, Nucleic acids research.

[9]  Andreas Wagner,et al.  GenomeHistory: a software tool and its application to fully sequenced genomes. , 2002, Nucleic acids research.

[10]  M. Gerstein,et al.  Subcellular localization of the yeast proteome. , 2002, Genes & development.

[11]  Justin C. Fay,et al.  Testing the neutral theory of molecular evolution with genomic data from Drosophila , 2002, Nature.

[12]  Adam Eyre-Walker,et al.  Adaptive protein evolution in Drosophila , 2002, Nature.

[13]  B. Barrell,et al.  The genome sequence of Schizosaccharomyces pombe , 2002, Nature.

[14]  P. Sternberg,et al.  Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Koonin,et al.  Selection in the evolution of gene duplications , 2002, Genome Biology.

[16]  T. Bogaert,et al.  A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. , 2001, Archives of biochemistry and biophysics.

[17]  A. Meyer,et al.  The Ghost of Selection Past: Rates of Evolution and Functional Divergence of Anciently Duplicated Genes , 2001, Journal of Molecular Evolution.

[18]  Joshua M. Stuart,et al.  A Gene Expression Map for Caenorhabditis elegans , 2001, Science.

[19]  M. Félix,et al.  Microevolutionary studies in nematodes: a beginning , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[20]  A. Clark,et al.  Differential selection after duplication in mammalian developmental genes. , 2001, Molecular biology and evolution.

[21]  R. Caprioli,et al.  A Sperm Cytoskeletal Protein That Signals Oocyte Meiotic Maturation and Ovulation , 2001, Science.

[22]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[24]  Michele Pagano,et al.  The F-box protein family , 2000, Genome Biology.

[25]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[26]  T. Roberts,et al.  Acting like Actin: The Dynamics of the Nematode Major Sperm Protein (Msp) Cytoskeleton Indicate a Push-Pull Mechanism for Amoeboid Cell Motility , 2000 .

[27]  A. Hughes,et al.  Adaptive diversification within a large family of recently duplicated, placentally expressed genes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[29]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[30]  A. Wagner,et al.  Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Gerald J. Wyckoff,et al.  Rapid evolution of male reproductive genes in the descent of man , 2000, Nature.

[32]  P. Holland,et al.  Gene duplication: past, present and future. , 1999, Seminars in cell & developmental biology.

[33]  M A Nowak,et al.  Evolutionary preservation of redundant duplicated genes. , 1999, Seminars in cell & developmental biology.

[34]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[35]  D. Hartl,et al.  Selective sweep of a newly evolved sperm-specific gene in Drosophila , 1998, Nature.

[36]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[37]  P. Lio’,et al.  Models of molecular evolution and phylogeny. , 1998, Genome research.

[38]  Chung-I Wu,et al.  Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. , 1998, Molecular biology and evolution.

[39]  R. Muzzarelli,et al.  Native and Modified Chitins in the Biosphere , 1998 .

[40]  B. Stankiewicz,et al.  Nitrogen-Containing Macromolecules in the Bio- and Geosphere , 1998 .

[41]  W. Terra,et al.  Molecular adaptation of Drosophila melanogaster lysozymes to a digestive function. , 1998, Insect biochemistry and molecular biology.

[42]  M. Nei,et al.  Positive Darwinian selection after gene duplication in primate ribonuclease genes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  T J Gibson,et al.  Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins. , 1998, Trends in genetics : TIG.

[44]  F. Sperling Molecular Systematics, 2nd ed. , 1997 .

[45]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[46]  D. Hillis,et al.  Molecular Systematics, Second Edition , 1996 .

[47]  Nick V. Grishin,et al.  Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites , 1995, Journal of Molecular Evolution.

[48]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[49]  S. Muse,et al.  A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. , 1994, Molecular biology and evolution.

[50]  N. Goldman,et al.  A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.

[51]  A. Hughes,et al.  Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. , 1993, Molecular biology and evolution.

[52]  E. Raff,et al.  Tissue-specific microtubule functions in Drosophila spermatogenesis require the beta 2-tubulin isotype-specific carboxy terminus. , 1993, Developmental biology.

[53]  Nick Goldman,et al.  Statistical tests of models of DNA substitution , 1993, Journal of Molecular Evolution.

[54]  B S Weir,et al.  Testing for equality of evolutionary rates. , 1992, Genetics.

[55]  D. Hultmark,et al.  The lysozyme locus in Drosophila melanogaster: different genes are expressed in midgut and salivary glands , 1992, Molecular and General Genetics MGG.

[56]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[57]  E. Raff,et al.  Two Drosophila beta tubulin isoforms are not functionally equivalent , 1990, The Journal of cell biology.

[58]  E. Raff,et al.  A variant beta-tubulin isoform of Drosophila melanogaster (beta 3) is expressed primarily in tissues of mesodermal origin in embryos and pupae, and is utilized in populations of transient microtubules. , 1989, Developmental biology.

[59]  D. Pilgrim,et al.  Primary structure requirements for correct sorting of the yeast mitochondrial protein ADH III to the yeast mitochondrial matrix space , 1987, Molecular and cellular biology.

[60]  M. Klass,et al.  Isolation and characterization of a sperm-specific gene family in the nematode Caenorhabditis elegans , 1984, Molecular and cellular biology.

[61]  J. Bennetzen,et al.  Codon selection in yeast. , 1982, The Journal of biological chemistry.

[62]  W. Li,et al.  Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. , 1980, Genetics.

[63]  Masatoshi Nei,et al.  Probability of Fixation of Nonfunctional Genes at Duplicate Loci , 1973, The American Naturalist.

[64]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[65]  R. Greenberg Biometry , 1969, The Yale Journal of Biology and Medicine.

[66]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[67]  D. Hultmark,et al.  The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract , 2004, Molecular and General Genetics MGG.

[68]  F. Ayala Molecular systematics , 2004, Journal of Molecular Evolution.

[69]  S. Tsoi,et al.  Phylogenetic Analysis of Vertebrate Lactate Dehydrogenase (LDH) Multigene Families , 2003, Journal of Molecular Evolution.

[70]  The FlyBase database of the Drosophila genome projects and community literature. , 2003, Nucleic acids research.

[71]  P. Lewis,et al.  Phylogenetic systematics turns over a new leaf. , 2001, Trends in ecology & evolution.

[72]  Paul W. Sternberg,et al.  WormBase: network access to the genome and biology of Caenorhabditis elegans , 2001, Nucleic Acids Res..

[73]  David Botstein,et al.  SGD: Saccharomyces Genome Database , 1998, Nucleic Acids Res..

[74]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[75]  E. Raff,et al.  Structural analysis of mutations in the Drosophila beta 2-tubulin isoform reveals regions in the beta-tubulin molecular required for general and for tissue-specific microtubule functions. , 1995, Genetics.

[76]  J. Broach,et al.  The Molecular biology of the yeast Saccharomyces : metabolism and gene expression , 1982 .

[77]  E. Neufeld,et al.  CARBOHYDRATE METABOLISM. , 1965, Annual review of biochemistry.