An introduction to timetabling

Abstract A huge variety of timetabling models have been described in the OR literature; they range from the weekly timetable of a school to the scheduling of courses or exams in a university. Graphs and networks have proven to be useful in the formulation and solution of such problems. Various models will be described with an emphasis on graph theoretical models.

[1]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[2]  Ronald D. Dutton,et al.  A New Graph Colouring Algorithm , 1981, Comput. J..

[3]  Bernardo Prida Romero,et al.  Examination Scheduling in a Large Engineering School: A Computer-Assisted Participative Procedure , 1982 .

[4]  Werner Junginger Zurückführung des Stundenplanproblems auf ein dreidimensionales Transportproblem , 1972, Z. Oper. Research.

[5]  D. de Werra,et al.  A tutorial on heuristic methods , 1980 .

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  John M. Mulvey A classroom/time assignment model , 1982 .

[8]  George M. White,et al.  Towards The Construction Of Optimal Examination Schedules , 1979 .

[9]  D. de Werra,et al.  Some experiments with a timetabling system , 1982 .

[10]  D. J. A. Welsh,et al.  An upper bound for the chromatic number of a graph and its application to timetabling problems , 1967, Comput. J..

[11]  A. T. Clementson,et al.  Continuous Timetabling Problems , 1982 .

[12]  Graham Smith Computer solutions to a class of scheduling problems. , 1976 .

[13]  Stefan D. Bloomfield,et al.  Preferential Course Scheduling , 1979 .

[14]  Gunther Schmidt,et al.  Timetable Construction - An Annotated Bibliography , 1980, Comput. J..

[15]  Arabinda Tripathy A Lagrangean Relaxation Approach to Course Timetabling , 1980 .

[16]  D. J. White A Note on Faculty Timetabling , 1975 .

[17]  Werner Junginger Zum aktuellen Stand der automatischen Stundenplanerstellung , 1982, Angew. Inform..

[18]  Nirbhay K. Mehta The Application of a Graph Coloring Method to an Examination Scheduling Problem , 1981 .

[19]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[20]  M.A.H. Dempster,et al.  School Timetabling by Computer a Technical History , 1975 .

[21]  D. Werra Some comments on a note about timetabling , 1978 .

[22]  J. R. Brown Chromatic Scheduling and the Chromatic Number Problem , 1972 .

[23]  Jürgen Peemöller,et al.  A correction to Brelaz's modification of Brown's coloring algorithm , 1983, CACM.

[24]  Norman L. Lawrie An integer linear programming model of a school timetabling problem , 1969, Comput. J..

[25]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[26]  D. de Werra A few remarks on chromatic scheduling , 1975 .

[27]  D. de Werra,et al.  Chromatic optimisation: Limitations, objectives, uses, references , 1982 .

[28]  Frank Thomson Leighton,et al.  A Graph Coloring Algorithm for Large Scheduling Problems. , 1979, Journal of research of the National Bureau of Standards.

[29]  Graham Smith,et al.  On Lion's counter example for Gotlieb's method for the construction of school timetables , 1974, CACM.

[30]  Onno B. de Gans,et al.  A computer timetabling system for secondary schools in the Netherlands , 1981 .