DigitalCrust – a 4D data system of material properties for transforming research on crustal fluid flow

This project is supported by the joint NSF-USGS John Wesley Powell Center for Earth System Analysis and Synthesis working group and an NSF EarthCube Geo-Domain Community Workshop grant (EAR-1251557).

[1]  S. Peters,et al.  Oceanographic controls on the diversity and extinction of planktonic foraminifera , 2013, Nature.

[2]  E. R. Oxburgh Fluids in the Earth's Crust , 1980, Mineralogical Magazine.

[3]  Diana M. Allen,et al.  Groundwater sustainability strategies , 2010 .

[4]  J. Welker,et al.  The role of topography on catchment‐scale water residence time , 2005 .

[5]  D. Cooper,et al.  Microattribution and nanopublication as means to incentivize the placement of human genome variation data into the public domain , 2012, Human mutation.

[6]  Roland Hiederer,et al.  Global Soil Organic Carbon Estimates and the Harmonized World Soil Database , 2011 .

[7]  C. Chamberlain,et al.  Hydrologic Regulation of Chemical Weathering and the Geologic Carbon Cycle , 2014, Science.

[8]  A. B. Ronov The Earth's sedimentary shell (quantitative patterns of its structure, compositions, and evolution) , 2010 .

[9]  L. Cathles,et al.  Fluid Flow and Petroleum and Mineral Resources in the Upper (<20-km) Continental Crust , 2005 .

[10]  T. Reilly,et al.  Flow and Storage in Groundwater Systems , 2002, Science.

[11]  D. Saffer The permeability of active subduction plate boundary faults , 2015 .

[12]  S. Peters Geologic constraints on the macroevolutionary history of marine animals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Christopher Ré,et al.  A machine-compiled macroevolutionary history of Phanerozoic life , 2014, ArXiv.

[14]  David R. Cole,et al.  CO2 Sequestration in Deep Sedimentary Formations , 2008 .

[15]  P. J. Chilton,et al.  Groundwater: the processes and global significance of aquifer degradation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  P. Weis The dynamic interplay between saline fluid flow and rock permeability in magmatic‐hydrothermal systems , 2015 .

[17]  S. Micklethwaite,et al.  The where and how of faults, fluids and permeability – insights from fault stepovers, scaling properties and gold mineralisation , 2015 .

[18]  T. Driesner,et al.  Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes , 2012, Science.

[19]  Martin Fowler,et al.  NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence , 2012 .

[20]  Roland N. Horne,et al.  NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS , 2013 .

[21]  R. Berner The phanerozoic carbon cycle : CO[2] and O[2] , 2004 .

[22]  T. Holland,et al.  Himalayan metamorphic CO2 fluxes: Quantitative constraints from hydrothermal springs , 2008 .

[23]  A. West,et al.  Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks , 2012 .

[24]  S. Peters,et al.  Phanerozoic Earth System Evolution and Marine Biodiversity , 2011, Science.

[25]  C. Cannatelli,et al.  Whole Earth geohydrologic cycle, from the clouds to the core: The distribution of water in the dynamic Earth system , 2013 .

[26]  J. Notenboom,et al.  Present state and future prospects for groundwater ecosystems , 2003, Environmental Conservation.

[27]  David M. Stoms,et al.  Annual Review of Environment and Resources , 2006 .

[28]  C. Voss,et al.  Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA , 2014 .

[29]  R. Berner The phanerozoic carbon cycle : CO[2] and O[2] , 2004 .

[30]  D. Canfield,et al.  Carbon Cycle Makeover , 2013, Science.

[31]  Roberto Revelli,et al.  Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications , 2014 .

[32]  R. Berner Rate control of mineral dissolution under Earth surface conditions , 1978 .

[33]  M. Hitzman,et al.  Induced Seismicity Potential of Energy Technologies , 2013 .

[34]  J. Connolly,et al.  An analytical solution for solitary porosity waves: dynamic permeability and fluidization of nonlinear viscous and viscoplastic rock , 2015 .

[35]  G. Fogg,et al.  Motivation of synthesis, with an example on groundwater quality sustainability , 2006 .

[36]  W. McDowell,et al.  Twelve testable hypotheses on the geobiology of weathering , 2011, Geobiology.

[37]  L. Owens,et al.  Deep fluid circulation within crystalline basement rocks and the role of hydrologic windows in the formation of the Truth or Consequences, New Mexico low‐temperature geothermal system , 2015 .

[38]  E. Hauksson,et al.  The Seismogenic Thickness of the Southern California Crust , 2004 .

[39]  S. Ingebritsen,et al.  Crustal permeability: Introduction to the special issue , 2015 .

[40]  P. J. Chilton,et al.  Groundwater and its susceptibility to degradation : a global assessment of the problem and options for management , 2003 .

[41]  P. Hamilton,et al.  Groundwater and surface water: A single resource , 2005 .

[42]  N. Batjes,et al.  Total carbon and nitrogen in the soils of the world , 1996 .

[43]  C. Gable,et al.  Evidence for long timescale (>103 years) changes in hydrothermal activity induced by seismic events , 2014 .

[44]  D. Schrag Preparing to Capture Carbon , 2007, Science.

[45]  T. Gleeson,et al.  The location of old groundwater in hydrogeologic basins and layered aquifer systems , 2013 .

[46]  Naoshi Hirata,et al.  Hypocenter migration and crustal seismic velocity distribution observed for the inland earthquake swarms induced by the 2011 Tohoku-Oki earthquake in NE Japan: Implications for crustal fluid distribution and crustal permeability , 2015 .

[47]  Marios Sophocleous,et al.  Review: groundwater management practices, challenges, and innovations in the High Plains aquifer, USA—lessons and recommended actions , 2010 .

[48]  S. Ge,et al.  Simultaneous rejuvenation and aging of groundwater in basins due to depth‐decaying hydraulic conductivity and porosity , 2010 .

[49]  S. Peters Environmental determinants of extinction selectivity in the fossil record , 2008, Nature.

[50]  L. V. Beek,et al.  Water balance of global aquifers revealed by groundwater footprint , 2012, Nature.

[51]  M. Taniguchi,et al.  Towards Sustainable Groundwater Use: Setting Long‐Term Goals, Backcasting, and Managing Adaptively , 2012, Ground water.

[52]  A. Attar Global environment: water, air and geochemical cycles , 2013 .

[53]  Jens Hartmann,et al.  A glimpse beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity , 2014 .

[54]  S. Peters,et al.  Sulfate Burial Constraints on the Phanerozoic Sulfur Cycle , 2012, Science.

[55]  S. Peters Macrostratigraphy of North America , 2006, The Journal of Geology.

[56]  S. Ingebritsen,et al.  Permeability of continental crust influenced by internal and external forcing , 2008 .

[57]  S. Kempe Carbon in the rock cycle , 1979 .

[58]  Patrick J. Mulholland,et al.  Streams and Ground Waters , 1999 .

[59]  S. Ingebritsen,et al.  Diffuse fluid flux through orogenic belts: Implications for the world ocean , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  S. A. Miller,et al.  Modeling enhanced geothermal systems and the essential nature of large‐scale changes in permeability at the onset of slip , 2015 .

[61]  M. Giordano Global Groundwater? Issues and Solutions , 2009 .

[62]  A. B. Ronov The Earth's sedimentary shell (quantitative patterns of its structure, compositions, and evolution): The 20th V.I. Vernadskly Lecture, March 12, 1978 , 1982 .

[63]  Eloise Kendy,et al.  Groundwater depletion: A global problem , 2005 .