Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration

Many consequences of cerebrovascular disease are identifiable by magnetic resonance imaging (MRI), but variation in methods limits multicenter studies and pooling of data. The European Union Joint Program on Neurodegenerative Diseases (EU JPND) funded the HARmoNizing Brain Imaging MEthodS for VaScular Contributions to Neurodegeneration (HARNESS) initiative, with a focus on cerebral small vessel disease.

Richard Frayne | Lucia Ballerini | Joanna M. Wardlaw | Charles DeCarli | M. Arfan Ikram | Stefan Ropele | Sudha Seshadri | Meike W. Vernooij | Rebecca M. E. Steketee | Geert Jan Biessels | Christopher J.M. Scott | Richard H. Swartz | Sandra E. Black | Simon Duchesne | Natalia S. Rost | Walter H. Backes | Martin Dichgans | Perminder S. Sachdev | Joel Ramirez | Lenore J. Launer | G. Bruce Pike | Steven Sourbron | Hieab Adams | Michael Ingrisch | Eric Jouvent | Eric E. Smith | Leonardo Pantoni | Cheryl R. McCreary | Michael J. Thrippleton | Bradley J. MacIntosh | Anand Viswanathan | Mukul Sharma | Yael D. Reijmer | G. B. Pike | Marco Düring | Steven M. Greenberg | C. DeCarli | D. Job | D. Werring | F.‐E. Leeuw | F. de Leeuw | S. Duchesne | P. Sachdev | S. Ropele | M. Dichgans | V. Mok | R. Swartz | M. V. van Osch | F. De Guio | S. Greenberg | S. Sourbron | M. Ingrisch | L. Pantoni | J. Wardlaw | M. Vernooij | M. Ikram | Y. Reijmer | G. Biessels | L. Launer | B. MacIntosh | R. Frayne | S. Seshadri | W. Backes | M. Thrippleton | Hieab H. H. Adams | L. Ballerini | E. Jouvent | A. Viswanathan | R. Corriveau | N. Rost | J. Ramirez | J. Linn | C. Scott | M. Düring | C. McCreary | M. Gurol | J. Romero | Mukul Sharma | S. Rooden | R. V. van Oostenbrugge | M. Osch | R. Steketee | B. Lam | Christopher Chen | Dominic Job | Jennifer Linn | M. Edip Gurol | David Werring | Sanneke van Rooden | Vincent C.T. Mok | Matthias van Osch | François De Guio | Robert van Oostenbrugge | Frank Erik de Leeuw | Rod Corriveau | Bonnie Y.K. Lam | Jose Rafael Romero | Rebecca M.E. Steketee | S. van Rooden | E. Smith | S. Black | M. Ikram | Sandra E. Black | Vincent C. T. Mok | S. Greenberg | C. Chen | E. Smith | Christopher P L H Chen | G. Pike | S. Black | R. Oostenbrugge | H. Adams

[1]  M. O’Sullivan,et al.  Small vessel disease and cognitive impairment: The relevance of central network connections , 2016, Human brain mapping.

[2]  M. van Buchem,et al.  Can arterial spin labeling detect white matter perfusion signal? , 2009, Magnetic resonance in medicine.

[3]  Ian Marshall,et al.  Cerebral blood flow in small vessel disease: A systematic review and meta-analysis , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  Steven P Sourbron,et al.  Classic models for dynamic contrast‐enhanced MRI , 2013, NMR in biomedicine.

[5]  European Society of Radiology ESR statement on the stepwise development of imaging biomarkers , 2013, Insights into Imaging.

[6]  M. Ewers,et al.  Free water determines diffusion alterations and clinical status in cerebral small vessel disease , 2018, Alzheimer's & Dementia.

[7]  Yi Wang,et al.  Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: Implications for multi-center studies , 2015, NeuroImage.

[8]  Vijaya L. Melnick,et al.  Alzheimer’s Dementia , 1985, Contemporary Issues in Biomedicine, Ethics, and Society.

[9]  Matthias Günther,et al.  T2‐based arterial spin labeling measurements of blood to tissue water transfer in human brain , 2013, Journal of magnetic resonance imaging : JMRI.

[10]  Bruce Fischl,et al.  Within-subject template estimation for unbiased longitudinal image analysis , 2012, NeuroImage.

[11]  J. Wardlaw,et al.  Cerebral Perivascular Spaces Visible on Magnetic Resonance Imaging: Development of a Qualitative Rating Scale and its Observer Reliability , 2015, Cerebrovascular Diseases.

[12]  Wiro J. Niessen,et al.  Altered tract-specific white matter microstructure is related to poorer cognitive performance: The Rotterdam Study , 2016, Neurobiology of Aging.

[13]  W. M. van der Flier,et al.  White Matter Lesion Progression in LADIS: Frequency, Clinical Effects, and Sample Size Calculations , 2012, Stroke.

[14]  Sridar Narayanan,et al.  Scan-rescan repeatability and cross-scanner comparability of DTI metrics in healthy subjects in the SPRINT-MS multicenter trial. , 2018, Magnetic resonance imaging.

[15]  Susana Muñoz Maniega,et al.  Coupled Changes in Brain White Matter Microstructure and Fluid Intelligence in Later Life , 2015, The Journal of Neuroscience.

[16]  Yufen Chen,et al.  Test–retest reliability of arterial spin labeling with common labeling strategies , 2011, Journal of magnetic resonance imaging : JMRI.

[17]  D. Norris,et al.  White Matter and Hippocampal Volume Predict the Risk of Dementia in Patients with Cerebral Small Vessel Disease: The RUN DMC Study. , 2015, Journal of Alzheimer's disease : JAD.

[18]  John S. Duncan,et al.  Identical, but not the same: Intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 T scanners , 2010, NeuroImage.

[19]  Andrew Dumas,et al.  Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy , 2012, Annals of neurology.

[20]  Cathie Sudlow,et al.  Lacunar stroke is associated with diffuse blood–brain barrier dysfunction , 2009, Annals of neurology.

[21]  Geert Jan Biessels,et al.  Detection, risk factors, and functional consequences of cerebral microinfarcts , 2017, The Lancet Neurology.

[22]  Oscar L. Lopez,et al.  Large Perivascular Spaces Visible on Magnetic Resonance Imaging, Cerebral Small Vessel Disease Progression, and Risk of Dementia: The Age, Gene/Environment Susceptibility–Reykjavik Study , 2017, JAMA neurology.

[23]  Benjamin S. Aribisala,et al.  Differentiation of calcified regions and iron deposits in the ageing brain on conventional structural MR images , 2014, Journal of magnetic resonance imaging : JMRI.

[24]  A. Hofman,et al.  Silent brain infarcts and the risk of dementia and cognitive decline. , 2003, The New England journal of medicine.

[25]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[26]  Benjamin S. Aribisala,et al.  White matter hyperintensities and normal-appearing white matter integrity in the aging brain , 2015, Neurobiology of Aging.

[27]  Andreas Charidimou,et al.  MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy , 2017, Neurology.

[28]  Ian Marshall,et al.  Magnetic resonance imaging for assessment of cerebrovascular reactivity in cerebral small vessel disease: A systematic review , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[29]  C. Pernet,et al.  Cerebrovascular reactivity measurement in cerebral small vessel disease: Rationale and reproducibility of a protocol for MRI acquisition and image processing , 2018, International journal of stroke : official journal of the International Stroke Society.

[30]  Erich P Huang,et al.  Metrology Standards for Quantitative Imaging Biomarkers. , 2015, Radiology.

[31]  Sandra E. Black,et al.  Gray matter blood flow and volume are reduced in association with white matter hyperintensity lesion burden: a cross-sectional MRI study , 2015, Front. Aging Neurosci..

[32]  N. Venketasubramanian,et al.  Enlarged perivascular spaces and cognition , 2018, Neurology.

[33]  F. Howe,et al.  Blood–brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[34]  R. Califf,et al.  Biomarkers and Surrogate Endpoints: Developing Common Terminology and Definitions. , 2016, JAMA.

[35]  Sudha Seshadri,et al.  Association of MRI Markers of Vascular Brain Injury With Incident Stroke, Mild Cognitive Impairment, Dementia, and Mortality: The Framingham Offspring Study , 2010, Stroke.

[36]  G. Lapin,et al.  Blood-brain barrier integrity in Alzheimer's disease patients and elderly control subjects. , 1998, The Journal of neuropsychiatry and clinical neurosciences.

[37]  W. Chen,et al.  Assessment of the Virchow-Robin Spaces in Alzheimer Disease, Mild Cognitive Impairment, and Normal Aging, Using High-Field MR Imaging , 2011, American Journal of Neuroradiology.

[38]  H. Markus,et al.  Change in multimodal MRI markers predicts dementia risk in cerebral small vessel disease , 2017, Neurology.

[39]  A. W. Chung,et al.  Structural network efficiency is associated with cognitive impairment in small-vessel disease , 2014, Neurology.

[40]  D. Norris,et al.  Structural network efficiency predicts conversion to dementia , 2016, Neurology.

[41]  P. Hofman,et al.  Measuring subtle leakage of the blood–brain barrier in cerebrovascular disease with DCE‐MRI: Test–retest reproducibility and its influencing factors , 2017, Journal of magnetic resonance imaging : JMRI.

[42]  Joanna M Wardlaw,et al.  What are White Matter Hyperintensities Made of? , 2015, Journal of the American Heart Association.

[43]  Hanzhang Lu,et al.  Time-efficient determination of spin compartments by time-encoded pCASL T2-relaxation-under-spin-tagging and its application in hemodynamic characterization of the cerebral border zones , 2015, NeuroImage.

[44]  D. Norris,et al.  Disruption of rich club organisation in cerebral small vessel disease , 2016, Human brain mapping.

[45]  Sandra E. Black,et al.  Misclassified Tissue Volumes in Alzheimer Disease Patients With White Matter Hyperintensities: Importance of Lesion Segmentation Procedures for Volumetric Analysis , 2008, Stroke.

[46]  M. Bastin,et al.  The brain health index: Towards a combined measure of neurovascular and neurodegenerative structural brain injury , 2018, International journal of stroke : official journal of the International Stroke Society.

[47]  Joanna M. Wardlaw,et al.  Risk and protective factors for structural brain ageing in the eighth decade of life , 2017, Brain Structure and Function.

[48]  D. Tanné,et al.  The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke , 2010, International journal of biological sciences.

[49]  Saeid Taheri,et al.  Quantitative measurement of blood‐brain barrier permeability in human using dynamic contrast‐enhanced MRI with fast T1 mapping , 2011, Magnetic resonance in medicine.

[50]  Joanna M. Wardlaw,et al.  Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability , 2016, NeuroImage.

[51]  Brian A. Taylor,et al.  Analysis of variability of fractional anisotropy values at 3T using a novel diffusion tensor imaging phantom , 2018, The neuroradiology journal.

[52]  D. Norris,et al.  Baseline white matter microstructural integrity is not related to cognitive decline after 5 years: The RUN DMC study , 2015, BBA clinical.

[53]  Richard Frayne,et al.  Neurovascular decoupling is associated with severity of cerebral amyloid angiopathy , 2013, Neurology.

[54]  David L. Lahna,et al.  Characterizing the white matter hyperintensity penumbra with cerebral blood flow measures , 2015, NeuroImage: Clinical.

[55]  M. van Buchem,et al.  Subtle blood‐brain barrier leakage rate and spatial extent: Considerations for dynamic contrast‐enhanced MRI , 2017, Medical physics.

[56]  G. Zaharchuk,et al.  Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. , 2015, Magnetic resonance in medicine.

[57]  Alexander Leemans,et al.  Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. , 2015, Brain : a journal of neurology.

[58]  Eric E. Smith,et al.  New insights into cerebral small vessel disease and vascular cognitive impairment from MRI , 2017, Current opinion in neurology.

[59]  J. Hendrikse,et al.  Longitudinal Relationship Between Cerebral Small-Vessel Disease and Cerebral Blood Flow: The Second Manifestations of Arterial Disease-Magnetic Resonance Study , 2015, Stroke.

[60]  G. McLennan,et al.  Quantitative imaging test approval and biomarker qualification: interrelated but distinct activities. , 2011, Radiology.

[61]  D. Norris,et al.  White matter changes and gait decline in cerebral small vessel disease , 2017, NeuroImage: Clinical.

[62]  David G Norris,et al.  Structural network connectivity and cognition in cerebral small vessel disease , 2016, Human brain mapping.

[63]  Naoto Hayashi,et al.  Effect of scanner in longitudinal diffusion tensor imaging studies , 2012, Human brain mapping.

[64]  Carole Dufouil,et al.  High degree of dilated Virchow-Robin spaces on MRI is associated with increased risk of dementia. , 2010, Journal of Alzheimer's disease : JAD.

[65]  T. Grabowski,et al.  Quantitative cerebrovascular pathology in a community-based cohort of older adults , 2018, Neurobiology of Aging.

[66]  S. Black,et al.  Understanding the role of the perivascular space in cerebral small vessel disease , 2018, Cardiovascular research.

[67]  James Duffin,et al.  Development of White Matter Hyperintensity Is Preceded by Reduced Cerebrovascular Reactivity , 2016, Annals of neurology.

[68]  D. Neary,et al.  Dilatation of the Virchow-Robin space is a sensitive indicator of cerebral microvascular disease: study in elderly patients with dementia. , 2005, AJNR. American journal of neuroradiology.

[69]  H. Bokura,et al.  Distinguishing silent lacunar infarction from enlarged Virchow-Robin spaces: a magnetic resonance imaging and pathological study , 1998, Journal of Neurology.

[70]  M. Woodward,et al.  Effects of Blood Pressure Lowering on Cerebral White Matter Hyperintensities in Patients With Stroke: The PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy , 2005, Circulation.

[71]  Axel Montagne,et al.  Optimal acquisition and modeling parameters for accurate assessment of low Ktrans blood–brain barrier permeability using dynamic contrast‐enhanced MRI , 2016, Magnetic resonance in medicine.

[72]  Stuart A. Taylor,et al.  Imaging biomarker roadmap for cancer studies , 2016, Nature Reviews Clinical Oncology.

[73]  M. van Buchem,et al.  Cerebrovascular function in presymptomatic and symptomatic individuals with hereditary cerebral amyloid angiopathy: a case-control study , 2017, The Lancet Neurology.

[74]  Bing Wu,et al.  Intra‐ and interscanner reliability and reproducibility of 3D whole‐brain pseudo‐continuous arterial spin‐labeling MR perfusion at 3T , 2014, Journal of magnetic resonance imaging : JMRI.

[75]  P. Scheltens,et al.  Diffusion changes predict cognitive and functional outcome: The LADIS study , 2013, Annals of neurology.

[76]  W. M. Palm,et al.  Pericortical Enhancement on Delayed Postgadolinium Fluid-Attenuated Inversion Recovery Images in Normal Aging, Mild Cognitive Impairment, and Alzheimer Disease , 2017, American Journal of Neuroradiology.

[77]  D J Mikulis,et al.  Contrast-Enhanced MR Imaging in Acute Ischemic Stroke: T2* Measures of Blood-Brain Barrier Permeability and Their Relationship to T1 Estimates and Hemorrhagic Transformation , 2010, American Journal of Neuroradiology.

[78]  Joanna M. Wardlaw,et al.  Use of dynamic contrast-enhanced MRI to measure subtle blood–brain barrier abnormalities , 2011, Magnetic resonance imaging.

[79]  Joanna M. Wardlaw,et al.  A comparison of location of acute symptomatic vs. ‘silent’ small vessel lesions , 2015, International journal of stroke : official journal of the International Stroke Society.

[80]  F. de Leeuw,et al.  A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms , 2016, Annals of neurology.

[81]  P. Hofman,et al.  Blood–brain barrier leakage is more widespread in patients with cerebral small vessel disease , 2017, Neurology.

[82]  Peiying Liu,et al.  Determination of spin compartment in arterial spin labeling MRI , 2011, Magnetic resonance in medicine.

[83]  David A. Bennett,et al.  Relation of Cerebral Vessel Disease to Alzheimer’s Disease Dementia and Cognitive Function in Older Persons: A Cross-sectional Study , 2016, The Lancet Neurology.

[84]  Geert Jan Biessels,et al.  Quantification of deep medullary veins at 7 T brain MRI , 2016, European Radiology.

[85]  Joanna M. Wardlaw,et al.  On the computational assessment of white matter hyperintensity progression: difficulties in method selection and bias field correction performance on images with significant white matter pathology , 2016, Neuroradiology.

[86]  Joanna M. Wardlaw,et al.  Blood–brain barrier: Ageing and microvascular disease – systematic review and meta-analysis , 2009, Neurobiology of Aging.

[87]  D. DeMets,et al.  Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework , 2001, Clinical pharmacology and therapeutics.

[88]  Peiying Liu,et al.  Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review , 2019, NeuroImage.

[89]  Arvind Caprihan,et al.  Long-Term Blood–Brain Barrier Permeability Changes in Binswanger Disease , 2015, Stroke.

[90]  Eleni Sakka,et al.  Integrity of normal-appearing white matter: Influence of age, visible lesion burden and hypertension in patients with small-vessel disease , 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[91]  Charles DeCarli,et al.  A priori collaboration in population imaging: The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement consortium , 2015, Alzheimer's & dementia.

[92]  K. Yamashita,et al.  Quantitative perfusion imaging with pulsed arterial spin labeling: a phantom study. , 2007, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[93]  Carole Dufouil,et al.  Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[94]  Sang Won Seo,et al.  MRI-visible perivascular space location is associated with Alzheimer's disease independently of amyloid burden , 2017, Brain : a journal of neurology.

[95]  Maxime Descoteaux,et al.  The Canadian Dementia Imaging Protocol: Harmonizing National Cohorts , 2018, Journal of magnetic resonance imaging : JMRI.

[96]  Lucia Ballerini,et al.  Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering , 2017, Scientific Reports.

[97]  M. Dichgans,et al.  Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging , 2013, The Lancet Neurology.

[98]  Jaco J M Zwanenburg,et al.  Targeting Cerebral Small Vessel Disease With MRI. , 2017, Stroke.

[99]  Marleen de Bruijne,et al.  Enlarged perivascular spaces in brain MRI: Automated quantification in four regions , 2019, NeuroImage.

[100]  E. Rostrup,et al.  Measurement of brain perfusion, blood volume, and blood‐brain barrier permeability, using dynamic contrast‐enhanced T1‐weighted MRI at 3 tesla , 2009, Magnetic resonance in medicine.

[101]  J. Wardlaw,et al.  Rationale, design and methodology of the image analysis protocol for studies of patients with cerebral small vessel disease and mild stroke , 2015, Brain and behavior.

[102]  A. Caprihan,et al.  MRI measurements of Blood-Brain Barrier function in dementia: A review of recent studies , 2017, Neuropharmacology.

[103]  C. Pozzilli,et al.  Simplified, noninvasive PET measurement of blood-brain barrier permeability. , 1987, Journal of computer assisted tomography.

[104]  Wiro J Niessen,et al.  White Matter Degeneration with Aging: Longitudinal Diffusion MR Imaging Analysis. , 2016, Radiology.

[105]  Arthur W. Toga,et al.  Blood-Brain Barrier Breakdown in the Aging Human Hippocampus , 2015, Neuron.

[106]  C Confavreux,et al.  Reliability of Longitudinal Brain Volume Loss Measurements between 2 Sites in Patients with Multiple Sclerosis: Comparison of 7 Quantification Techniques , 2012, American Journal of Neuroradiology.

[107]  I. V. van Uden,et al.  White Matter Microstructural Damage on Diffusion Tensor Imaging in Cerebral Small Vessel Disease: Clinical Consequences , 2016, Stroke.

[108]  Stefan Ropele,et al.  In Vivo High-Resolution 7 Tesla MRI Shows Early and Diffuse Cortical Alterations in CADASIL , 2014, PloS one.

[109]  H. Markus,et al.  Progression of MRI markers in cerebral small vessel disease: Sample size considerations for clinical trials , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[110]  Joanna M. Wardlaw,et al.  Advanced Neuroimaging of Cerebral Small Vessel Disease , 2017, Current Treatment Options in Cardiovascular Medicine.

[111]  Nick C Fox,et al.  Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration , 2013, The Lancet Neurology.

[112]  Joanna M. Wardlaw,et al.  Estimated maximal and current brain volume predict cognitive ability in old age , 2013, Neurobiology of Aging.

[113]  H. Markus,et al.  Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease , 2016, PloS one.

[114]  J. Wardlaw,et al.  Sample size considerations for trials using cerebral white matter hyperintensity progression as an intermediate outcome at 1 year after mild stroke: results of a prospective cohort study , 2017, Trials.