The TDMR Package: Tuned Data Mining in R

4 TDMR Data Reading and Data Split in Train / Validation / Test Data 7 4.1 Data Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 Training, Validation and Test Set . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2.2 Test Set Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2.3 main TASK and its training/validation/test logic . . . . . . . . . . . . . . 11 4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

[1]  M. Powell A New Algorithm for Unconstrained Optimization , 1970 .

[2]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[3]  Thomas Lengauer,et al.  ROCR: visualizing classifier performance in R , 2005, Bioinform..

[4]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[5]  Thomas Bartz-Beielstein,et al.  Parameter-Tuned Data Mining: A General Framework , 2010 .

[6]  Thomas Bartz-Beielstein,et al.  SPOT: An R Package For Automatic and Interactive Tuning of Optimization Algorithms by Sequential Parameter Optimization , 2010, ArXiv.

[7]  Wolfgang Konen,et al.  Self-configuration from a Machine-Learning Perspective , 2011, ArXiv.

[8]  Thomas Bartz-Beielstein,et al.  Tuned data mining: a benchmark study on different tuners , 2011, GECCO '11.

[9]  Bernd Bischl,et al.  Tuning and evolution of support vector kernels , 2012, Evol. Intell..

[10]  Wolfgang Konen,et al.  Efficient Sampling and Handling of Variance in Tuning Data Mining Models , 2012, PPSN.

[11]  W. Konen,et al.  Subsampling strategies in SVM ensembles , 2013 .

[12]  Wolfgang Konen,et al.  SVM Ensembles Are Better When Different Kernel Types Are Combined , 2013, ECDA.

[13]  Thomas Bäck,et al.  Efficient multi-criteria optimization on noisy machine learning problems , 2015, Appl. Soft Comput..

[14]  C. X. Kou,et al.  A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization , 2015, J. Optim. Theory Appl..