PESTO: Parameter EStimation TOolbox

Abstract Summary PESTO is a widely applicable and highly customizable toolbox for parameter estimation in MathWorks MATLAB. It offers scalable algorithms for optimization, uncertainty and identifiability analysis, which work in a very generic manner, treating the objective function as a black box. Hence, PESTO can be used for any parameter estimation problem, for which the user can provide a deterministic objective function in MATLAB. Availability and implementation PESTO is a MATLAB toolbox, freely available under the BSD license. The source code, along with extensive documentation and example code, can be downloaded from https://github.com/ICB-DCM/PESTO/. Supplementary information Supplementary data are available at Bioinformatics online.

[1]  Radu Serban,et al.  User Documentation for CVODES: An ODE Solver with Sensitivity Analysis Capabilities , 2002 .

[2]  J. Hasenauer,et al.  Integration based profile likelihood calculation for PDE constrained parameter estimation problems , 2016, 1604.02894.

[3]  Jan Hasenauer,et al.  Analysis of CFSE time-series data using division-, age- and label-structured population models , 2016, Bioinform..

[4]  Mateusz Krzysztof Lacki,et al.  State-dependent swap strategies and automatic reduction of number of temperatures in adaptive parallel tempering algorithm , 2016, Stat. Comput..

[5]  Luís N. Vicente,et al.  A particle swarm pattern search method for bound constrained global optimization , 2007, J. Glob. Optim..

[6]  I. Mandel,et al.  Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.

[7]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[8]  Fabio Rigat,et al.  Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm , 2012, Comput. Stat. Data Anal..

[9]  Fabian J Theis,et al.  Lessons Learned from Quantitative Dynamical Modeling in Systems Biology , 2013, PloS one.

[10]  A. Mira,et al.  Parallel hierarchical sampling : a general-purpose class of multiple-chains MCMC algorithms , 2009 .

[11]  David Henriques,et al.  MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics , 2013, BMC Bioinformatics.

[12]  Fabian J Theis,et al.  High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling. , 2013, Mathematical biosciences.

[13]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[14]  Fabian J. Theis,et al.  Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks , 2016, bioRxiv.