On the Statistical Significance of Climatic Trends Estimated From GPS Tropospheric Time Series

[1]  Michael Mayer,et al.  EXTENDED NEUTROSPHERI C MODELLING FOR THE GNSS-BASED DETERMINATION OF HIGH-RESOLUTION ATMOSPHERIC WATER VAPOUR FIELDS , 2008 .

[2]  Tilo Schöne,et al.  IGS Tide Gauge Benchmark Monitoring Pilot Project (TIGA): scientific benefits , 2009 .

[3]  Y. Tsushima,et al.  Relative humidity changes in a warmer climate , 2010 .

[4]  Eric J. Fetzer,et al.  Atmospheric moisture content associated with surface air temperatures over northern Eurasia , 2010 .

[5]  P. Steigenberger,et al.  On the homogeneity and interpretation of precipitable water time series derived from global GPS observations , 2009 .

[6]  P. Fearnhead,et al.  Optimal detection of changepoints with a linear computational cost , 2011, 1101.1438.

[7]  M. Schneider,et al.  A decadal time series of water vapor and D / H isotope ratios above Zugspitze: transport patterns to central Europe , 2017 .

[8]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[9]  Giulio Ruffini,et al.  Estimation of Tropospheric Zenith Delay and Gradients over the Madrid Area Using GPS and WVR Data , 1999 .

[10]  Maorong Ge,et al.  Validation of GPS slant delays using water vapour radiometers and weather models , 2008 .

[11]  M. Lavielle,et al.  Detection of multiple change-points in multivariate time series , 2006 .

[12]  S. Hagemann,et al.  Can climate trends be calculated from reanalysis data , 2004 .

[13]  J. Wickert,et al.  Estimating trends in atmospheric water vapor and temperature time series over Germany , 2017 .

[14]  Kevin E. Trenberth,et al.  Trends and variability in column-integrated atmospheric water vapor , 2005 .

[15]  Gunnar Elgered,et al.  Climate monitoring using GPS , 2002 .

[16]  S. Jade,et al.  GPS‐based atmospheric precipitable water vapor estimation using meteorological parameters interpolated from NCEP global reanalysis data , 2008 .

[17]  Thomas A. Herring,et al.  Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data , 1997 .

[18]  Gregory C. Reinsel,et al.  Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation , 1990 .

[19]  K. Trenberth Changes in precipitation with climate change , 2011 .

[20]  A. J. Miller,et al.  Factors affecting the detection of trends: Statistical considerations and applications to environmental data , 1998 .

[21]  Harald Schuh,et al.  Estimating Integrated Water Vapor Trends From VLBI, GPS, and Numerical Weather Models: Sensitivity to Tropospheric Parameterization , 2018, Journal of Geophysical Research: Atmospheres.

[22]  Galina Dick,et al.  Benchmark campaign and case study episode in central Europe for development and assessment of advanced GNSS tropospheric models and products , 2016 .

[23]  Andrew A. Lacis,et al.  Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature , 2010, Science.

[24]  Douglas W. Nychka,et al.  Statistical significance of trends and trend differences in layer-average atmospheric temperature time series , 2000 .

[25]  Y. Bar-Sever,et al.  Estimating horizontal gradients of tropospheric path delay with a single GPS receiver , 1998 .

[26]  Galina Dick,et al.  Near Real Time GPS Water Vapor Monitoring for Numerical Weather Prediction in Germany , 2004 .

[27]  H. Bovensmann,et al.  Analysis of global water vapour trends from satellite measurements in the visible spectral range , 2007 .

[28]  Andrzej Araszkiewicz,et al.  EPN-Repro2: A reference GNSS tropospheric data set over Europe , 2016 .

[29]  T. Schöne,et al.  Status of the IGS-TIGA Tide Gauge Data Reprocessing at GFZ , 2015 .

[30]  J. Schulz,et al.  Comparison of decadal global water vapor changes derived from independent satellite time series , 2014 .

[31]  J. Wickert,et al.  Homogenized Time Series of the Atmospheric Water Vapor Content Obtained from the GNSS Reprocessed Data , 2016 .

[32]  Fadwa Alshawaf,et al.  Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Alan Dodson,et al.  Atmospheric water vapour correction to InSAR surface motion measurements on mountains: Results from a dense GPS network on Mount Etna , 2002 .

[34]  Statistical significance of trends in Zenith Wet Delay from re-processed GPS solutions , 2018, GPS Solutions.

[35]  A. Dai,et al.  Global Water Vapor Trend from 1988 to 2011 and Its Diurnal Asymmetry Based on GPS, Radiosonde, and Microwave Satellite Measurements , 2016 .

[36]  Tobias Nilsson,et al.  Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data , 2008 .

[37]  Galina Dick,et al.  A methodology to compute GPS slant total delays in a numerical weather model , 2012 .

[38]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[39]  Claude N. Williams,et al.  Radiosonde‐based trends in precipitable water over the Northern Hemisphere: An update , 2009 .

[40]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .