Pan-cancer analysis of pathway-based gene expression pattern at the individual level reveals biomarkers of clinical prognosis

[1]  Jingya Fang,et al.  Revealing Prognosis-Related Pathways at the Individual Level by a Comprehensive Analysis of Different Cancer Transcription Data , 2020, Genes.

[2]  Christopher I. Amos,et al.  Comparison of pathway and gene-level models for cancer prognosis prediction , 2020, BMC Bioinformatics.

[3]  M. Cabanillas,et al.  Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. , 2019, Endocrine reviews.

[4]  Qingsong Liu,et al.  Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance , 2019, Nature Communications.

[5]  Y. Pomyen,et al.  NELFE-Dependent MYC Signature Identifies a Unique Cancer Subtype in Hepatocellular Carcinoma , 2019, Scientific Reports.

[6]  Shuguang Zuo,et al.  A RNA sequencing-based six-gene signature for survival prediction in patients with glioblastoma , 2019, Scientific Reports.

[7]  O. Ashur-Fabian,et al.  Thyroid Hormones and Cancer: A Comprehensive Review of Preclinical and Clinical Studies , 2019, Front. Endocrinol..

[8]  Gary D Bader,et al.  Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap , 2019, Nature Protocols.

[9]  Jin Zhang,et al.  Identification of biomarkers of chromophobe renal cell carcinoma by weighted gene co-expression network analysis , 2018, Cancer Cell International.

[10]  Raúl A. Mejía-Pedroza,et al.  Pathway-Based Drug Repositioning for Breast Cancer Molecular Subtypes , 2018, Front. Pharmacol..

[11]  Lovelace J. Luquette,et al.  A Pan-Cancer Compendium of Genes Deregulated by Somatic Genomic Rearrangement across More Than 1,400 Cases. , 2018, Cell reports.

[12]  Chin-Lee Wu,et al.  Identification of Biomarkers Associated With Pathological Stage and Prognosis of Clear Cell Renal Cell Carcinoma by Co-expression Network Analysis , 2018, Front. Physiol..

[13]  Steven J. M. Jones,et al.  Oncogenic Signaling Pathways in The Cancer Genome Atlas. , 2018, Cell.

[14]  G. Hampton,et al.  A transcriptional MAPK Pathway Activity Score (MPAS) is a clinically relevant biomarker in multiple cancer types , 2018, npj Precision Oncology.

[15]  R. Mehra,et al.  A Multigene Signature Based on Cell Cycle Proliferation Improves Prediction of Mortality Within 5 Yr of Radical Nephrectomy for Renal Cell Carcinoma. , 2017, European urology.

[16]  Nicolai J. Birkbak,et al.  Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling , 2017, Nature Communications.

[17]  N. Ambalavanan,et al.  Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs , 2017, Nature Communications.

[18]  C. Lindskog,et al.  A pathology atlas of the human cancer transcriptome , 2017, Science.

[19]  Nils Blüthgen,et al.  Classification of gene signatures for their information value and functional redundancy , 2017, npj Systems Biology and Applications.

[20]  Yunfeng Zhou,et al.  Identifying biomarkers of papillary renal cell carcinoma associated with pathological stage by weighted gene co-expression network analysis , 2017, Oncotarget.

[21]  Wei Zhu,et al.  Identification of prognostic genes in kidney renal clear cell carcinoma by RNA-seq data analysis , 2017, Molecular medicine reports.

[22]  J. Sáez-Rodríguez,et al.  Perturbation-response genes reveal signaling footprints in cancer gene expression , 2016, Nature Communications.

[23]  Luca Scrucca,et al.  mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models , 2016, R J..

[24]  Hojung Nam,et al.  Prognostic factor analysis for breast cancer using gene expression profiles , 2016, BMC medical informatics and decision making.

[25]  Lin Yuan,et al.  Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin , 2016, Modern Pathology.

[26]  R. Bernards,et al.  Targeting the RB-E2F pathway in breast cancer , 2016, Oncogene.

[27]  Sriganesh Srihari,et al.  Personalised pathway analysis reveals association between DNA repair pathway dysregulation and chromosomal instability in sporadic breast cancer , 2016, Molecular oncology.

[28]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[29]  C. Criscitiello,et al.  Targeting fibroblast growth factor receptor pathway in breast cancer , 2015, Current opinion in oncology.

[30]  P. Campbell,et al.  Somatic mutation in cancer and normal cells , 2015, Science.

[31]  Eytan Domany,et al.  Pathway‐based personalized analysis of breast cancer expression data , 2015, Molecular oncology.

[32]  F. Gergely,et al.  Hitting the brakes: targeting microtubule motors in cancer , 2015, British Journal of Cancer.

[33]  G. Nagaraj,et al.  Revisiting the estrogen receptor pathway and its role in endocrine therapy for postmenopausal women with estrogen receptor-positive metastatic breast cancer , 2015, Breast Cancer Research and Treatment.

[34]  K. White,et al.  Cell death in development: Signaling pathways and core mechanisms. , 2015, Seminars in cell & developmental biology.

[35]  Benjamin J. Raphael,et al.  Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes , 2014, Nature Genetics.

[36]  E. Knudsen,et al.  Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions , 2014, Breast Cancer Research.

[37]  A. Bittner,et al.  Comparison of RNA-Seq and Microarray in Transcriptome Profiling of Activated T Cells , 2014, PloS one.

[38]  R. Nahta,et al.  P38 MAPK contributes to resistance and invasiveness of HER2- overexpressing breast cancer. , 2013, Current medicinal chemistry.

[39]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[40]  A. Martínez-Torteya,et al.  SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis , 2013, PloS one.

[41]  C. Mason,et al.  Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data , 2013, Genome Biology.

[42]  M. Kallio,et al.  Mitosis as an anti-cancer drug target , 2013, Chromosoma.

[43]  James X. Sun,et al.  Relapsed Classic E-Cadherin (CDH1)–Mutated Invasive Lobular Breast Cancer Shows a High Frequency of HER2 (ERBB2) Gene Mutations , 2013, Clinical Cancer Research.

[44]  Michal Sheffer,et al.  Pathway-based personalized analysis of cancer , 2013, Proceedings of the National Academy of Sciences.

[45]  Charlotte Soneson,et al.  A comparison of methods for differential expression analysis of RNA-seq data , 2013, BMC Bioinformatics.

[46]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[47]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[48]  N. López-Bigas,et al.  Sample-level enrichment analysis unravels shared stress phenotypes among multiple cancer types , 2012, Genome Medicine.

[49]  Atul J. Butte,et al.  Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges , 2012, PLoS Comput. Biol..

[50]  Yonghe Li,et al.  The wnt/β‐catenin signaling pathway: A potential therapeutic target in the treatment of triple negative breast cancer , 2012, Journal of cellular biochemistry.

[51]  Peter J. Bickel,et al.  Measuring reproducibility of high-throughput experiments , 2011, 1110.4705.

[52]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[53]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[54]  Deepa Subramanyam,et al.  Notch Signaling Pathway as a Therapeutic Target in Breast Cancer , 2010, Molecular Cancer Therapeutics.

[55]  R. Figlin,et al.  Targeted Therapies for Non–Small Cell Lung Cancer: An Evolving Landscape , 2010, Molecular Cancer Therapeutics.

[56]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[57]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[58]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[59]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[60]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[61]  Jos Jonkers,et al.  Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. , 2006, Cancer cell.

[62]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  David Cameron,et al.  Identification of molecular apocrine breast tumours by microarray analysis , 2005, Oncogene.

[64]  Van,et al.  A gene-expression signature as a predictor of survival in breast cancer. , 2002, The New England journal of medicine.

[65]  Huitu Liu,et al.  MAPK signal pathways in the regulation of cell proliferation in mammalian cells , 2002, Cell Research.

[66]  T. Crook,et al.  The p53 pathway in breast cancer , 2002, Breast Cancer Research.

[67]  Tobias Schmelzle,et al.  TOR, a Central Controller of Cell Growth , 2000, Cell.

[68]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[69]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[70]  Miao Chen,et al.  KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway and predicts good prognosis in breast cancer. , 2018, Cellular signalling.

[71]  R. Askeland,et al.  Cell cycle progression score predicts metastatic progression of clear cell renal cell carcinoma after resection. , 2015, Cancer biomarkers : section A of Disease markers.

[72]  D. Brat,et al.  Research and applications: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data , 2013, J. Am. Medical Informatics Assoc..

[73]  G. Hordijk,et al.  Online supplemental material , 2011 .

[74]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[75]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..