One-Dimensional Edge Transport in Few-Layer WTe2

WTe2 is a layered transitional-metal dichalcogenide (TMD) with a number of intriguing topological properties. Recently, WTe2 has been predicted to be a higher-order topological insulator (HOTI) with topologically protected hinge states along the edges. The gapless nature of WTe2 complicates the observation of one-dimensional (1D) topological states in transport due to their small contribution relative to the bulk. Here, we study the behavior of the Josephson effect in magnetic field to distinguish edge from bulk transport. The Josephson effect in few-layer WTe2 reveals 1D states residing on the edges and steps. Moreover, our data demonstrates a combination of Josephson transport properties observed solely in another HOTI—bismuth, including Josephson transport over micrometer distances, extreme robustness in a magnetic field, and nonsinusoidal current-phase relation (CPR). Our observations strongly suggest the topological origin of the 1D states and that few-layer WTe2 is a HOTI.

[1]  K. T. Law,et al.  Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states , 2019, Nature Materials.

[2]  B. Bernevig,et al.  Observation of a Majorana zero mode in a topologically protected edge channel , 2019, Science.

[3]  N. Kolesnikov,et al.  Surface superconductivity in a three-dimensional Cd3As2 semimetal at the interface with a gold contact , 2018, Physical Review B.

[4]  B. Shao,et al.  Pseudodoping of a metallic two-dimensional material by the supporting substrate , 2018, Nature Communications.

[5]  Binghai Yan,et al.  Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe_{2} (X=Mo,W). , 2018, Physical review letters.

[6]  Wenjin Zhao,et al.  Gate-induced superconductivity in a monolayer topological insulator , 2018, Science.

[7]  Kenji Watanabe,et al.  Electrically tunable low-density superconductivity in a monolayer topological insulator , 2018, Science.

[8]  R. Bi,et al.  Spin zero and large Landé g-factor in WTe2 , 2018, New Journal of Physics.

[9]  Z. Mi,et al.  Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2 , 2018, Scientific Reports.

[10]  N. Kolesnikov,et al.  Signature of Fermi arc surface states in Andreev reflection at the WTe2 Weyl semimetal surface , 2018, EPL (Europhysics Letters).

[11]  R. Prozorov,et al.  Nodeless superconductivity in the type-II Dirac semimetal PdTe2 : London penetration depth and pairing-symmetry analysis , 2018, Physical Review B.

[12]  K. T. Law,et al.  Inducing Strong Superconductivity in WTe2 by a Proximity Effect. , 2018, ACS nano.

[13]  K. T. Law,et al.  Asymmetric Josephson effect in inversion symmetry breaking topological materials , 2018, Physical Review B.

[14]  M. Vergniory,et al.  Higher-Order Topology in Bismuth , 2018, Nature Physics.

[15]  N. Kolesnikov,et al.  Realization of a Double-Slit SQUID Geometry by Fermi Arc Surface States in a WTe2 Weyl Semimetal , 2018, JETP Letters.

[16]  Kenji Watanabe,et al.  Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal , 2017, Science.

[17]  H. Alshareef,et al.  Evidence for topological type-II Weyl semimetal WTe2 , 2017, Nature Communications.

[18]  Ying-Shuang Fu,et al.  Observation of topological states residing at step edges of WTe2 , 2017, Nature Communications.

[19]  Y. Pashkin,et al.  Graphene-based tunable SQUIDs , 2017 .

[20]  D. Koelle,et al.  Current-Phase Relation of Ballistic Graphene Josephson Junctions , 2016, Nano letters.

[21]  Zaiyao Fei,et al.  Edge conduction in monolayer WTe2 , 2016, Nature Physics.

[22]  F. Brisset,et al.  Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry , 2016, Nature Communications.

[23]  L. Molenkamp,et al.  Gapless Andreev bound states in the quantum spin Hall insulator HgTe. , 2016, Nature nanotechnology.

[24]  A. Morpurgo,et al.  Tuning magnetotransport in a compensated semimetal at the atomic scale , 2015, Nature Communications.

[25]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[26]  Q. Gibson,et al.  Correlation of crystal quality and extreme magnetoresistance of WTe2 , 2015, 1506.04823.

[27]  Jiaqiang Yan,et al.  Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in WTe2 crystals , 2015, 1502.04465.

[28]  Zhongxian Zhao,et al.  Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride , 2015, Nature Communications.

[29]  Guanghou Wang,et al.  Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride , 2015, Nature Communications.

[30]  A. Dixit,et al.  PdTe: a 4.5 K type-II BCS superconductor , 2014, Superconductor Science and Technology.

[31]  L. Molenkamp,et al.  Nonsinusoidal current-phase relationship in Josephson junctions from the 3D topological insulator HgTe. , 2014, Physical review letters.

[32]  W. Wegscheider,et al.  Edge-mode superconductivity in a two-dimensional topological insulator. , 2014, Nature nanotechnology.

[33]  Y. Hor,et al.  Evidence for an anomalous current–phase relation in topological insulator Josephson junctions , 2013, Nature Communications.

[34]  S. Sengupta,et al.  Magnetic field resistant quantum interferences in Josephson junctions based on bismuth nanowires , 2014 .

[35]  B. V. van Wees,et al.  Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride , 2014, 1403.0399.

[36]  V. Krasnov,et al.  Detection of the phase shift from a single Abrikosov vortex. , 2010, Physical review letters.

[37]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[38]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[39]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[40]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[41]  I. O. Kulik,et al.  Properties of superconducting microbridges in the pure limit , 1977 .

[42]  R. Dynes,et al.  Supercurrent density distribution in Josephson junctions , 1971 .

[43]  Vinay Ambegaokar,et al.  Tunneling between superconductors , 1963 .