H-BLOB: a hierarchical visual clustering method using implicit surfaces

We present a new hierarchical clustering and visualization algorithm called H-BLOB, which groups and visualizes cluster hierarchies at multiple levels-of-detail. Our method is fundamentally different to conventional clustering algorithms, such as C-means, K-means, or linkage methods that are primarily designed to partition a collection of objects into subsets sharing similar attributes. These approaches usually lack an efficient level-of-detail strategy that breaks down the visual complexity of very large datasets for visualization. In contrast, our method combines grouping and visualization in a two stage process constructing a hierarchical setting. In the first stage a cluster tree is computed making use of an edge contraction operator. Exploiting the inherent hierarchical structure of this tree, a second stage visualizes the clusters by computing a hierarchy of implicit surfaces. We believe that H-BLOB is especially suited for the visualization of very large datasets and for visual decision making in information visualization. The versatility of the algorithm is demonstrated using examples from visual data mining.

[1]  James Allan,et al.  Interactive Cluster Visualization for Information Retrieval , 1997 .

[2]  Thomas C. Sprenger,et al.  IVORY-an object-oriented framework for physics-based information visualization in Java , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[3]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[4]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[5]  David Eppstein,et al.  Dynamic Euclidean minimum spanning trees and extrema of binary functions , 1995, Discret. Comput. Geom..

[6]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[7]  Danny Coomans,et al.  Comparative Performance Analysis of Non-Linear Dimensionality Reduction Methods , 1995 .

[8]  Tyson R. Henry,et al.  Interactive graph layout , 1991, UIST '91.

[9]  Markus H. Gross,et al.  Visualizing information on a sphere , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[10]  George Karypis,et al.  C HAMELEON : A Hierarchical Clustering Algorithm Using Dynamic Modeling , 1999 .

[11]  B. S. Duran,et al.  Cluster Analysis: A Survey , 1974 .

[12]  Vipin Kumar,et al.  Partitioning-based clustering for Web document categorization , 1999, Decis. Support Syst..

[13]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[14]  Johannes Gehrke,et al.  Mining Very Large Databases , 1999, Computer.

[15]  Peter J. Rousseeuw,et al.  CLUSTERING LARGE DATA SETS , 1986 .

[16]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[17]  Jules Bloomenthal,et al.  An Implicit Surface Polygonizer , 1994, Graphics Gems.

[18]  James C. French,et al.  Clustering large datasets in arbitrary metric spaces , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[19]  Andreas Ludwig,et al.  A Fast Adaptive Layout Algorithm for Undirected Graphs , 1994, GD.

[20]  Ryszard S. Michalski,et al.  Conceptual Clustering of Structured Objects: A Goal-Oriented Approach , 1986, Artif. Intell..

[21]  Russell Beale,et al.  Case study. Narcissus: visualising information , 1995, Proceedings of Visualization 1995 Conference.

[22]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[23]  M. Arbib,et al.  Arrows, Structures, and Functors: The Categorical Imperative , 1975 .

[24]  Forrest W. Young Multidimensional Scaling: History, Theory, and Applications , 1987 .

[25]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[26]  Markus H. Gross,et al.  A Framework for Physically-Based Information Visualization , 1997, Visualization in Scientific Computing.

[27]  Bernd Hamann,et al.  Visualization of cluster hierarchies , 1998, Electronic Imaging.

[28]  Arne Frick,et al.  Fast Interactive 3-D Graph Visualization , 1995, GD.

[29]  Dov M. Gabbay,et al.  Background : mathematical structures , 1992 .