Isthmus based parallel and symmetric 3D thinning algorithms

We propose a 3D paralel and symmetri homotopi thinning method.The frame work of critical kernels ensures the topological soundnes of our method.Salient geometri features of the objects are deteted by "isthmuses".Either curvilinear or surface skeletons may be produced."Isthmus persistence" alows us to cope with the robustness to noise issue. Display Omitted We propose a 3D symmetric homotopic thinning method based on the critical kernels framework. It may produce either curvilinear or surface skeletons, depending on the criterion that is used to prevent salient features of the object from deletion. In our new method, rather than detecting curve or surface extremities, we detect isthmuses, that is, parts of an object that are "locally like a curve or a surface". This allows us to propose a natural extension of our new method that copes with the robustness to noise issue, this extension is based on a notion of "isthmus persistence". As far as we know, this is the first method that permits to obtain 3D symmetric and robust curvilinear/surface skeletons of objects made of voxels.

[1]  Gabriella Sanniti di Baja,et al.  Simplifying curve skeletons in volume images , 2003, Comput. Vis. Image Underst..

[2]  David Coeurjolly,et al.  Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Gilles Bertrand,et al.  A new characterization of three-dimensional simple points , 1994, Pattern Recognition Letters.

[4]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[5]  Ching Y. Suen,et al.  Veinerization: A New Shape Description for Flexible Skeletonization , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Hugues Talbot,et al.  Robust skeletonization using the discrete λ-medial axis , 2011, Pattern Recognit. Lett..

[7]  Christophe Lohou,et al.  A 3D 12-subiteration thinning algorithm based on P-simple points , 2004, Discret. Appl. Math..

[8]  Ralph Kopperman,et al.  Dimensional properties of graphs and digital spaces , 1996, Journal of Mathematical Imaging and Vision.

[9]  Gabriella Sanniti di Baja,et al.  On the computation of the 3, 4, 5 curve skeleton of 3D objects , 2011, Pattern Recognit. Lett..

[10]  Gilles Bertrand,et al.  A Boolean characterization of three-dimensional simple points , 1996, Pattern Recognition Letters.

[11]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[12]  Gilles Bertrand,et al.  New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[14]  Christophe Lohou,et al.  Two symmetrical thinning algorithms for 3D binary images, based on P-simple points , 2007, Pattern Recognit..

[15]  Jean-Daniel Boissonnat,et al.  Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[16]  P. Giblin Graphs, surfaces, and homology , 1977 .

[17]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[18]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Trans. Vis. Comput. Graph..

[19]  Michel Couprie,et al.  Discrete bisector function and Euclidean skeleton in 2D and 3D , 2007, Image Vis. Comput..

[20]  Manuel Graña,et al.  A Pruning Algorithm for Stable Voronoi Skeletons , 2011, Journal of Mathematical Imaging and Vision.

[21]  Gilles Bertrand,et al.  Three-dimensional thinning algorithm using subfields , 1995, Other Conferences.

[22]  E. C. Zeeman,et al.  On the dunce hat , 1963 .

[23]  Luciano da Fontoura Costa,et al.  Multiscale skeletons by image foresting transform and its application to neuromorphometry , 2002, Pattern Recognit..

[24]  Michel Couprie,et al.  Scale Filtered Euclidean Medial Axis , 2013, DGCI.

[25]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[26]  Stelios Krinidis,et al.  Empirical mode decomposition on skeletonization pruning , 2013, Image Vis. Comput..

[27]  Gilles Bertrand,et al.  Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..

[28]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 2005, International Journal of Computer Vision.

[29]  Xing Zhang,et al.  A skeleton pruning algorithm based on information fusion , 2013, Pattern Recognit. Lett..

[30]  King-Sun Fu,et al.  A parallel thinning algorithm for 3-D pictures , 1981 .

[31]  Wenyu Liu,et al.  Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Bhabatosh Chanda,et al.  Topology preservation in 3D digital space , 1994, Pattern Recognit..

[33]  Jacques-Olivier Lachaud,et al.  Delaunay conforming iso-surface, skeleton extraction and noise removal , 2001, Comput. Geom..

[34]  Attila Kuba,et al.  A 3D 6-subiteration thinning algorithm for extracting medial lines , 1998, Pattern Recognit. Lett..

[35]  E. R. Davies,et al.  Thinning algorithms: A critique and a new methodology , 1981, Pattern Recognit..

[36]  Gilles Bertrand,et al.  Powerful Parallel and Symmetric 3D Thinning Schemes Based on Critical Kernels , 2012, Journal of Mathematical Imaging and Vision.

[37]  Kálmán Palágyi,et al.  A 3D fully parallel surface-thinning algorithm , 2008, Theor. Comput. Sci..

[38]  Luc Vincent,et al.  Euclidean skeletons and conditional bisectors , 1992, Other Conferences.

[39]  T. Yung Kong,et al.  Topology-Preserving Deletion of 1's from 2-, 3- and 4-Dimensional Binary Images , 1997, DGCI.

[40]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[41]  Mikkel Thorup Equivalence between priority queues and sorting , 2007, JACM.

[42]  Gilles Bertrand,et al.  On Parallel Thinning Algorithms: Minimal Non-simple Sets, P-simple Points and Critical Kernels , 2009, Journal of Mathematical Imaging and Vision.

[43]  Gilles Bertrand,et al.  On P-simple points , 1995 .

[44]  W.E. Higgins,et al.  System for analyzing high-resolution three-dimensional coronary angiograms , 1996, IEEE Trans. Medical Imaging.

[45]  Gilles Bertrand,et al.  New Notions for Discrete Topology , 1999, DGCI.

[46]  Edouard Thiel,et al.  Exact medial axis with euclidean distance , 2005, Image Vis. Comput..

[47]  Alfred M. Bruckstein,et al.  Pruning Medial Axes , 1998, Comput. Vis. Image Underst..

[48]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[49]  Dominique Attali,et al.  Modeling noise for a better simplification of skeletons , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[50]  Gilles Bertrand,et al.  On critical kernels , 2007 .

[51]  Antoine Manzanera,et al.  N-dimensional Skeletonization: a Unified Mathematical Framework , 2002, J. Electronic Imaging.

[52]  Michel Couprie,et al.  Topological maps and robust hierarchical Euclidean skeletons in cubical complexes , 2013, Comput. Vis. Image Underst..

[53]  Gilles Bertrand,et al.  Two-Dimensional Parallel Thinning Algorithms Based on Critical Kernels , 2008, Journal of Mathematical Imaging and Vision.

[54]  F. Chazal,et al.  The λ-medial axis , 2005 .

[55]  Kin-Man Lam,et al.  Extraction of the Euclidean skeleton based on a connectivity criterion , 2003, Pattern Recognit..

[56]  Péter Kardos,et al.  Topology Preserving 3D Thinning Algorithms Using Four and Eight Subfields , 2010, ICIAR.

[57]  Erin W. Chambers,et al.  A simple and robust thinning algorithm on cell complexes , 2010, Comput. Graph. Forum.

[58]  Milan Sonka,et al.  Tree pruning strategy in automated detection of coronary trees in cineangiograms , 1995, Proceedings., International Conference on Image Processing.

[59]  J. Whitehead Simplicial Spaces, Nuclei and m‐Groups , 1939 .

[60]  T. Yung Kong,et al.  On Topology Preservation in 2-D and 3-D Thinning , 1995, Int. J. Pattern Recognit. Artif. Intell..

[61]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[62]  Daniela Giorgi,et al.  Describing shapes by geometrical-topological properties of real functions , 2008, CSUR.

[63]  Yaorong Ge,et al.  On the Generation of Skeletons from Discrete Euclidean Distance Maps , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Kaleem Siddiqi,et al.  The Hamilton-Jacobi skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[65]  Alfred M. Bruckstein,et al.  Skeletonization via Distance Maps and Level Sets , 1995, Comput. Vis. Image Underst..

[66]  Martin Styner,et al.  Automatic and Robust Computation of 3D Medial Models Incorporating Object Variability , 2003, International Journal of Computer Vision.

[67]  Christophe Lohou,et al.  A 3D 6-subiteration curve thinning algorithm based on P-simple points , 2005, Discret. Appl. Math..

[68]  Mark Pauly,et al.  The scale axis transform , 2009, SCG '09.

[69]  Attila Kuba,et al.  A Parallel 3D 12-Subiteration Thinning Algorithm , 1999, Graph. Model. Image Process..

[70]  Wim H. Hesselink,et al.  Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Luc M. Vincent,et al.  Efficient computation of various types of skeletons , 1991, Medical Imaging.

[72]  Azriel Rosenfeld,et al.  A Characterization of Parallel Thinning Algorithms , 1975, Inf. Control..

[73]  J. Chaussard Topological tools for discrete shape analysis , 2010 .

[74]  Rémy Malgouyres,et al.  Determining Whether a Simplicial 3-Complex Collapses to a 1-Complex Is NP-Complete , 2008, DGCI.

[75]  R. Ho Algebraic Topology , 2022 .

[76]  Sven J. Dickinson,et al.  Canonical Skeletons for Shape Matching , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[77]  Attila Kuba,et al.  Directional 3D Thinning Using 8 Subiterations , 1999, DGCI.