Sensing and coverage for a network of heterogeneous robots

We address the problem of covering an environment with robots equipped with sensors. The robots are heterogeneous in that the sensor footprints are different. Our work uses the location optimization framework in with three significant extensions. First, we consider robots with different sensor footprints, allowing, for example, aerial and ground vehicles to collaborate. We allow for finite size robots which enables implementation on real robotic systems. Lastly, we extend the previous work allowing for deployment in non convex environments.