The ABC conjecture and prime divisors of the Lucas and Lehmer sequences
暂无分享,去创建一个
[1] Axel Thue. Über Annäherungswerte algebraischer Zahlen. , 1909 .
[2] G. Pólya. Zur arithmetischen Untersuchung der Polynome , 1918 .
[3] C. Siegel. Approximation algebraischer Zahlen , 1921 .
[4] C. Hooley. On Artin's conjecture. , 1967 .
[5] Michael Francis Atiyah,et al. Introduction to commutative algebra , 1969 .
[6] A. Baker,et al. A sharpening of the bounds for linear forms in logarithms , 1972 .
[7] P. Erdös,et al. On the greatest and least prime factors of $n!+1$. II. , 1976, Publicationes Mathematicae Debrecen.
[8] C. Stewart,et al. On Divisors of Fermat, Fibonacci, Lucas, and Lehmer Numbers , 1977 .
[9] M. Ram Murty,et al. A remark on Artin's conjecture , 1984 .
[10] Joseph H. Silverman,et al. Wieferich's criterion and the abc-conjecture , 1988 .
[11] J. Oesterlé,et al. Nouvelles approches du «théorème» de Fermat , 1988 .
[12] B. M. Fulk. MATH , 1992 .
[13] M. Langevin. Cas d'égalité pour le théorème de Mason et applications de la conjecture (abc) , 1993 .
[14] Jürgen G. Hinz,et al. On Siegel zeros of Hecke-Landau zeta-functions , 1994 .
[15] G. Frey. On Ternary Equations of Fermat Type and Relations with Elliptic Curves , 1997 .
[16] Andrew Granville,et al. ABC allows us to count squarefrees , 1998 .
[17] H. C. Williams,et al. Édouard Lucas and primality testing , 1999 .
[18] P. Ribenboim,et al. The ABC Conjecture and the Powerful Part of Terms in Binary Recurring Sequences , 1999 .
[19] Guillaume Hanrot,et al. Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .
[20] P. Erd6s. Some Recent Advances and Current Problems in Number Theory , 2002 .