The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses

Abstract The knowledge of the long-term behavior of nuclear waste in anticipation of ultimate disposal in a deep geological formation is of prime importance in a waste management strategy. If phenomenological models have been developed to predict the long-term behavior of these materials, validating these models remains a challenge, when considering the time scale of radioactive decay of radionuclides of environmental concern, typically 10 4 –10 5  yrs. Here we show how natural or archaeological analogues provide critical constraints not only on the phenomenology of glass alteration and the mechanisms involved, but also on the ability of experimental short-term data to predict long-term alteration in complex environments.

[1]  G. Libourel,et al.  Elemental and isotopic (29Si and 18O) tracing of glass alteration mechanisms , 2010 .

[2]  A. White,et al.  Kinetic model for the short-term dissolution of a rhyolitic glass , 1980 .

[3]  T. Advocat,et al.  Dissolution kinetics of basaltic glasses: control by solution chemistry and protective effect of the alteration film , 2001 .

[4]  D. Crusset,et al.  A review of the archaeological analogue approaches to predict the long-term corrosion behaviour of carbon steel overpack and reinforced concrete structures in the French disposal systems , 2010 .

[5]  P. Frugier,et al.  Theoretical consideration on the application of the Aagaard–Helgeson rate law to the dissolution of silicate minerals and glasses , 2008 .

[6]  G. Libourel,et al.  Water diffusion in silicate glasses under natural weathering conditions: evidence from buried medieval stained glasses , 2006 .

[7]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[8]  J. Thomassin,et al.  Archaeological glasses as modelling of the behavior of buried nuclear waste glass , 1992 .

[9]  J. Petit Reasoning by analogy: rational foundation of natural analogue studies , 1992 .

[10]  Eric H. Oelkers,et al.  General kinetic description of multioxide silicate mineral and glass dissolution , 2001 .

[11]  B. C. Bunker,et al.  Molecular mechanisms for corrosion of silica and silicate glasses , 1994 .

[12]  Donald R. Baer,et al.  The structure of Na2O-A12O3-SiO2 glass: Impact on sodium ionexchange in H2O and D2O , 2001 .

[13]  Jean-Eric Lartigue,et al.  SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model , 2008 .

[14]  P. Frugier,et al.  Son68 Glass Dissolution Kinetics at High Reaction Progress: Mechanisms Accounting for The Residual Alteration Rate , 2006 .

[15]  Patrick Jollivet,et al.  Insight into silicate-glass corrosion mechanisms. , 2008, Nature materials.

[16]  B. Grambow,et al.  A General Rate Equation for Nuclear Waste Glass Corrosion , 1984 .

[17]  G. Libourel,et al.  Using stained glass windows to understand the durability of toxic waste matrices , 2001 .

[18]  R. Ewing Natural Glasses: Analogues for Radioactive Waste Forms , 1979 .

[19]  É. Vernaz,et al.  Fracture Appraisal of Large Scale Glass Blocks Under Realistic Thermal Conditions , 1981 .

[20]  Alain Trouiller Le Callovo-Oxfordien du bassin de Paris : du contexte géologique à la modélisation de ses propriétés , 2006 .

[21]  S. Gin,et al.  A fractured roman glass block altered for 1800 years in seawater: Analogy with nuclear waste glass in a deep geological repository , 2008 .

[22]  Souen Deva Fontaine,et al.  L'épave Ouest-Embiez 1, Var : le commerce maritime du verre brut et manufacturé en Méditerranée occidentale dans l'Antiquité , 2007 .

[23]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[24]  G. Calas,et al.  Structural evolution of glass surface during alteration: Application to nuclear waste glasses , 2010 .

[25]  T. Chave,et al.  Solid state diffusion during nuclear glass residual alteration in solution , 2007 .

[26]  R. Ewing Nuclear Waste Form Glasses: The Evaluation of Very Long-Term Behaviour , 2001 .

[27]  Jérôme Sterpenich Altération des vitraux médiévaux. Contribution à l'étude du comportement à long terme des verres de confinement , 1998 .

[28]  P. Frugier,et al.  Long-term modeling of alteration-transport coupling: Application to a fractured Roman glass , 2010 .

[29]  S. Gin,et al.  Archaeological analogs and the future of nuclear waste glass , 2010 .

[30]  S. Gin,et al.  Glass–iron–clay interactions in a radioactive waste geological disposal: An integrated laboratory-scale experiment , 2011 .

[31]  C. Pantano,et al.  Dissolution of albite glass and crystal , 2000 .

[32]  Bernd Grambow,et al.  First-order dissolution rate law and the role of surface layers in glass performance assessment , 2001 .

[33]  P. Jollivet,et al.  Simulated alteration tests on non-radioactive SON 68 nuclear glass in the presence of corrosion products and environmental materials , 2000 .